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Evolution has created a spectacular assortment of diversity that has intrigued 
naturalists for centuries, and more recently, has been used by biologists to inves-
tigate basic principles of life on earth. In the same light that biomedical research 
uses dysfunction such as cancer or neurological disease to better understand 
function, the extreme cases of evolutionary processes can be used to study the 
basic principles that govern adaption in response to a changing environment. 
Perhaps one of the most distinct shifts in environment seen in nature is one of 
moving from surface to subterranean life.

Throughout the world are examples of cave animals, ranging from salaman-
ders to small insects that have evolved cave-like traits that include albinism and 
eye loss. The Mexican cavefish, Astyanax mexicanus, provides a particularly 
striking system, because fish evolved in 29 geographically isolated caves over 
the last ~5 million years. While these fish look dramatically different from their 
river-dwelling counterparts, they remain interfertile, providing biologists with a 
tool to investigate the genetic basis for developmental, anatomical, and behav-
ioral evolution.

The interest in cavefish extends well beyond the scientists using this system 
to those interested in cave exploration, biology, zoology, and evolution. The 
book is written to provide both historical perspective and a current snapshot of 
research on these fish. The first investigation of these caves, dating back to the 
early 1920s, included the heroic attempts by early speleologists to characterize 
the geology and biology of cave life. This book takes readers from the initial 
discovery of these caves to early experiments classifying fish through recent 
advances in genomics and neuroscience. As such, the diverse authors share a 
variety of perspectives that are pertinent to some of the ongoing discussions and 
debates about the biology of Astyanax.

The decision to write this book largely stems from the unique state of the 
research community. The recent era of genomics has provided powerful tools for 
investigating the evolutionary and population history of these fish. A genome for 
Mexican cavefish was published only last year, and the advent of genome-editing 
tools may allow for the identification of genes regulating behavior and develop-
mental processes at a resolution previously thought possible only in  genetically 
amenable systems, such as mice, zebrafish, and fruit flies. Therefore, we believe 
this is an excellent time to review the history of investigation in this field, as op-
portunities and interest in this system are likely to expand greatly in the future.

Preface



Many of the contributors to this book are the titans of the field and respon-
sible for some of the most important discoveries in this system. Included are 
contributions from Bill Elliot, part of a small team that explored many caves for 
the first time; Bill Jeffery (University of Maryland) and Cliff Tabin (Harvard), 
who led work describing biology underlying albinism and eye loss in cavefish; 
Richard Borowsky (New York University), who has used genomics to trace the 
evolution of these fish; and Sylvie Rétaux (CNRS, France), who has identified 
many factors governing changes in brain development and behavior in cavefish.
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INTRODUCTION

Anybody who visits an Astyanax facility hosting surface fish and cavefish in 
adjacent tanks and who has a good sense of observation will at first have a 
hard time believing that they truly belong to the same species. Indeed, the 
two morphs look so different. Usually, the visitor first sees that one is depig-
mented and albino while the other is nicely colored. Then he rapidly gets a 
feeling that there is “something wrong” with the head of the cave morph, and 
he finds that the eyes are missing. These are the two main, obvious morpho-
logical differences.

The attentive observer will further compare the two types of fish and he will 
find much more. He will see that surface morphs swim in the water column 
and school, while cave morphs have a tendency to occupy the bottom half of 
the tank, and swim constantly on their own. He will notice that in the surface 
fish groups, one or two individuals constantly strike at some others, behaving 
as dominant in the school, and that this does not apply to cave morphs. On the 
other hand, he will be surprised by how well blind morphs navigate in their tank, 
almost never bumping on the aquarium walls or into their congeners. If he has 
the chance to visit the fish facility at feeding time, he will be struck by the fast 
and furious way the surface fish swim toward food; and he will appreciate the 
special feeding posture taken by cave morphs, which allows them to clean the 
food from the bottom of the tanks efficiently within a few minutes. These differ-
ences, together with some others that are not obvious at first sight (e.g., reduced 
sleep/increased wakefulness, attraction to vibrations or olfactory capabilities), 

Chapter 12

Neural Development and 
Evolution in Astyanax mexicanus: 
Comparing Cavefish and Surface 
Fish Brains

Sylvie Rétaux, Alexandre Alié, Maryline Blin, Lucie Devos, Yannick 
Elipot and Hélène Hinaux
Development and Evolution of the Forebrain, DECA Group, Neuroscience-Paris Saclay Institute, 
CNRS avenue de la terrasse, Paris, France
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correspond to major behavioral differences between the two Astyanax morphs. 
They correspond to behaviors that can be classified as various types: (1) sen-
sory; (2) motor; and (3) other, more complex and motivated behaviors, which all 
are governed by various parts of the nervous system.

What are the developmental and evolutionary mechanisms underlying the 
above-listed changes in the cavefish nervous system and its associated behav-
iors? Research in the field has mainly explored two directions that will be re-
viewed here.

First, comparative neurodevelopment and comparative neuroanatomy 
studies have revealed quantitative variations in the size of specific regions 
of the brain or in the number or size of specific sensory organs between cave 
and surface morphs. This type of variation can be coined as “neural special-
ization,” supposedly in adaptation to environmental changes. For example, 
in the dark, it is probably advantageous to be “olfactory-oriented” to find 
food and mates, while in a lighted environment, it is important to maintain 
visual function. Classical cases of such brain evolutionary specialization 
come, for example, from nocturnal rodents in which the visual cortex is re-
duced, but the auditory and somato-sensory cortex is expanded (Campi and 
Krubitzer, 2010; Krubitzer et al., 2011). Among fishes, similar processes 
are described in cichlid fishes. In African lakes, very closely related cich-
lid species with distinct ecological specializations have significantly differ-
ent brains: rock-dwellers (Mbuna) live in complex environments, engage 
in complex social interactions, and have a large telencephalon; while sand-
dwellers (non-Mbuna) live in a simple environment, essentially use visually 
driven behaviors, and have a large optic tectum and thalamus. Interestingly, 
it has been shown that differences between Mbuna and non-Mbuna arise 
early in development, and that boundaries between brain regions, hence 
the respective sizes of these brain regions, are set up through antagonisms 
among signaling systems (Sylvester et al., 2010, 2013). In cave Astyanax as 
well, we will see that natural variations in nervous system patterning occur 
through early signaling modulations.

Second, some recent evidence suggests evolution of “brain neurochemis-
try” between cave and surface Astyanax. Indeed, even subtle changes in neu-
romodulatory systems are prone to generate significant variations in complex 
behaviors, such as motivated or social behaviors. This can be achieved if the 
number of neurons using a given neurotransmitter is changed (a situation that 
resembles the possibility discussed above, in which the size of a brain region or 
a neuronal group varies), or if the intensity or amount of neurotransmission is 
affected at the level of the synthesis, release, reception, modulation, or transduc-
tion of the signal. From a neurophysiological point of view, the behavioral syn-
drome—which is a correlated suite of behavioral phenotypes across multiple 
situations (Sih et al, 2004), such as those described above—exhibited by cave 
Astyanax clearly evokes the possibility of such disequilibrium in neuromodula-
tory transmitters.
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ADULT BRAIN ANATOMY AND BRAIN NETWORKS

Figure 12.1 presents the comparative anatomy of adult Pachón cavefish and 
surface fish brains at the macroscopic level. As described by Riedel (1997), 
the cavefish brain is “slender and elongated.” This impression is mainly due to 
the difference of shape of the telencephalon (trapezoidal in cavefish, ovoid in 
surface fish) and to the severe reduction in the width and global size of the optic 
tectum in cavefish (Figure 12.1(A) and (B)).

Concerning the telencephalon, volumetric studies indicate it is enlarged in 
the Pachón population, but not in other populations, such as Micos or Chica 
(Peters et al., 1993). The authors of this study hypothesized that telencephalic 
enlargement was due to the enhancement of the sense of taste, but this should 
be confirmed by connectivity studies. Qualitative and quantitative observations 
done in our laboratory in adults and juveniles also suggest that the olfactory bulbs 
are larger in cavefish (Figure 12.1(A) and (B); Rétaux and Bibliowicz, unpub-
lished). Concerning olfactory connectivity, Riedel and Krug have  documented 

FIGURE 12.1 Comparing adult brains in Astyanax surface fish and Pachón cavefish. (A and B) 
show dorsal views of adult brains after dissection (anterior is up). The two individuals were of 
identical size (4 cm standard length). The dotted lines indicate the approximate section levels shown 
in (C) and (D). ob, olfactory bulbs; tel, telencephalon; ot, optic tectum; cb, cerebellum. (C and D) 
show frontal sections through the head of adult fish, after Klüver and Barrera coloration. The ar-
rowheads on the Pachón picture show degenerated and cystic eye, partially calcified (dark/purple) 
and covered by skin. r, retina; l, lens; on, optic nerve; ot, optic tectum; s, skin.
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that the projections of the olfactory bulb onto the cavefish telencephalon re-
semble a “simple Bauplan,” and they concluded that the telencephalon is not 
dominated by olfactory inputs (Riedel and Krug, 1997); however, as they only 
analyzed the cavefish olfactory projections, no comparative surface fish data 
exists to determine olfactory specialization, or lack thereof, at this level.

At the diencephalic level, the major difference between the two morphs is 
the absence of eyes in cavefish, and is accompanied by a very severe reduc-
tion of the optic nerves (Riedel, 1997; Figure 12.1(C) and (D)). Despite evolu-
tion in complete darkness, cavefish have nevertheless conserved their “pineal 
eye”; the dorsal diencephalic pineal gland (or epiphysis) is structurally intact 
(Grunewald-Lowenstein, 1956; Herwig, 1976; Langecker et al., 1993; Omura, 
1975) and has conserved the ability in larvae to detect light, probably thanks to 
correct rhodopsin expression (Yoshizawa and Jeffery, 2008). A specific and pro-
gressive regression of the regular outer-segment organization of pineal sensory 
cells nevertheless occurs in 3-, 9-, and 18-month-old cavefish, without affecting 
other parts of the pineal gland (Herwig, 1976). Interestingly, this regression be-
gins earlier and is more obvious when cavefish are reared in constant darkness 
than when they are reared in light/dark conditions (Herwig, 1976), and it also 
occurs in constant light (Omura, 1975). This suggests that part of the degenera-
tive process is attributable to a lack of light-activated neuronal activity.

Caudally, in the mesencephalon, the difference in the size of the optic tec-
tum of the two morphs is striking (Figure 12.1(A) and (B)). This applies to all 
Astyanax cavefish populations examined, including Micos and Chica for which 
no difference was found with the surface fishes' telencephalon (Peters et al., 
1993), or Los Sabinos (our personal observations), and to various extents that 
seem related to the degree of eye reduction. Logically, tectal hypomorphy has 
been linked to eye rudimentation (see below). Regarding the connection, as 
stated above, the optic nerve is greatly reduced, and projections from the retinal 
cyst are very sparse (Voneida and Sligar, 1976; Figure 12.1(C)). Some residual 
fibers can be seen in the superficial layers of the medial third of the tectum (as 
well as in the nucleus opticus hypothalamicus and lateral geniculate nucleus); 
however, this remnant visual connection is unresponsive to visual cues, and 
no electrophysiologically detectable signal can be recorded from the optic cyst 
onto the tectum (Voneida and Fish, 1984). This poses the question of the func-
tion of the cavefish “optic” tectum, which does indeed contain efferent pyra-
midal cells. The only evoked activity that is recordable in the cavefish tectum 
is generated after somatosensory stimulation (but not lateral line or auditory 
stimulation, which are invariably evoked in the torus semicircularis), and in 
a topographical manner (Voneida and Fish, 1984). As it is not unusual to find 
extravisual modality in the vertebrate tectum, the authors interpreted this find-
ing as a decrease in visual inputs paralleled by an increase in somatic inputs, a 
situation that is comparable to experimental models following enucleation (e.g., 
Benedetti, 1992; Chabot et al., 2007; Champoux et al., 2008; Mundinano and 
Martinez-Millan, 2010). An interesting question would be to know whether the 
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visual-to-somatic rewiring in cavefish occurs during development as a plastic-
ity phenomenon, in parallel to the progressive degeneration of the eye and the 
loss of visual innervation, or whether this rewiring is genetically programmed 
and has already been fixed during evolution in the dark. Comparison with visu-
ally deprived surface fish would start answering this question. More generally, 
cavefish are useful models when studying vision-related and vision-dependent 
neural plasticity phenomena.

A SPECIAL CASE: DEVELOPMENT AND DEGENERATION 
OF THE CAVEFISH VISUAL SYSTEM

The genetic mechanisms underlying eye loss in cavefish are reviewed in 
Chapter 11 of this book (Yamamoto et al.), and the evolutionary forces leading 
to eye loss have been discussed recently (Rétaux and Casane, 2013). Here, we 
will only briefly describe the progressive remodeling of the visual system that 
occurs in cavefish between embryonic and adult stages.

During cavefish early embryogenesis and larval development, an eye is 
formed from the diencephalic neuroepithelium and its adjacent lens placode. 
This eye starts forming retinal layers (Alunni et al., 2007) and the proliferative 
zones of both the retina and the lens are active, although they are smaller than 
in surface fish larvae (Alunni et al., 2007; Hinaux et al., 2015; Strickler et al., 
2002; Figure 12.2(C′) and (D′)). In fact, retinal cells are constantly born and 
are incorporated into the retina, while concomitantly many retinal cells die by 
apoptosis. At the end, cell death will win the battle against neurogenesis, and 
the eye will disappear (Figure 12.1(D)). The initial trigger for eye degeneration 
in cavefish is thought to be lens apoptosis; transplantation of a surface fish lens 
into a cavefish optic cup is able to rescue the eye of the cavefish while the recip-
rocal experiment induces the degeneration of the surface fish eye (Yamamoto 
and Jeffery, 2000).

The optic tectum, a brain region that derives from the alar plate of the 
mesencephalon and that constitutes the major retinorecipient structure in the 
brains of fishes and amphibians, is also patterned and regionalized properly in 
cavefish. The presumptive optic tectum expresses Pax6, Pax2, Engrailed2 in 
domains of equivalent sizes in the two morphs (Soares et al., 2004; see Lhx9 
in Figure 12.2(A) and (B)). During the first days of development, prolifera-
tion is also equivalent in the dorsal mesencephalon of cave and surface larvae 
(Menuet et al., 2007; Blin and Rétaux, unpublished observations) (see prolif-
erating cell nuclear antigen (PCNA) in Figure 12.2(C) and (D)). When the DiI 
tracing technique is applied on the initial cavefish retinotectal projection at 36 
or 72 h  post-fertilization (hpf), it is found that the optic nerve develops from 
the axons of the first generated retinal ganglion cells, reaches the tectum, and 
even arborizes on its target (Soares et al., 2004). This may explain why cavefish 
may be able to see, or at least to have some visual abilities, very transiently, 
during their first days of life, as suggested by positive electroretinograms and 
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 prey-catching behavior (Daphne Soares, communication at AIM2009); how-
ever, as rhodopsin is apparently not expressed in the cavefish retina around these 
stages (Yoshizawa and Jeffery, 2008), the underlying visual circuit and visual 
transduction mechanism is therefore unclear and deserves further studies.

As mentioned above, though, the adult cavefish tectum is much reduced in 
volume (−50%) and contains less neurons (−20%) than in surface fish (Soares 
et al., 2004). To our knowledge, cell death (by apoptosis, necrosis, or autoph-
agy) has not been investigated in the cavefish optic tectum during the period of 

FIGURE 12.2 Comparing larval brain development in Astyanax surface fish and Pachón cave-
fish. (A and B) Patterning of the 36 hpf brain, as observed through the expression of the LIM-
homeodomain transcription factor Lhx9, in toto, on a lateral view. Anterior is left and dorsal is up.  
t, telencephalon; d, diencephalon; h, hypothalamus; m, midbrain; hb, hindbrain. (CC′ and DD′), 
proliferation in the 60 hpf larval brain (C and D) and in the 7 dpf eye (C′ and D′), as viewed through 
PCNA immunohistochemistry on frontal sections. d, diencephalon; h, hypothalamus; ot, optic tectum;  
r, retina; l, lens; cmz, ciliary marginal zone. (E and F) Differentiated neurons in the hypothalamus (h) 
and the paraventricular nucleus (pv) at 7 dpf, illustrated here for the serotonergic system on a ventral 
view of a dissected brain after serotonin immunostaining, in toto. Anterior is left.
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tectal shrinkage. To investigate directly whether tectal regression was a second-
ary consequence of eye degeneration, the lens transplantation model was used. 
In lens-transplanted cavefish with a restored eye (on one side only), the size 
of the corresponding optic nerve and the extant of contralateral tectal innerva-
tion are increased; however, the procedure results in only a slight increase in 
tectal volume (+13%) and tectal neuron number (+8%) (Soares et al., 2004), 
which hardly compares to the surface fish situation. Importantly, it seems that 
lens transplantation in cavefish restores the eye as an organ, but does not re-
store vision-based response, tested in a phototaxis assay (Romero et al., 2003). 
Thus, in cavefish that received embryonically a surface fish lens, an eye and a 
retinotectal projection is present (Soares et al., 2004), but this visual system is 
probably not active or functional. This data strongly suggests that the reduced 
size of the optic tectum in cavefish is indeed a secondary consequence of eye 
degeneration, and indicates activity-dependent mechanisms that are probably 
lacking at the tectal level to maintain the integrity of the structure.

EARLY EMBRYONIC DEVELOPMENT: THE ORIGIN  
OF CAVEFISH DIFFERENCES?

Fortunately for EvoDevo studies, surface fish and cavefish embryos develop 
at the same pace, allowing rigorous comparisons of early embryogenesis and 
larval stages (Hinaux et al., 2011). At the end of gastrulation, at 9.5-10 hpf, 
Pachón cavefish embryos have a slightly ovoid shape resembling a rugby ball, 
whereas surface fish embryos exhibit a rounder shape (Hinaux et al., 2011). 
According to the literature, such a phenotype suggests a slight change in 
dorsoventral patterning during early embryogenesis (e.g., Barth et al., 1999; 
Kishimoto et al., 1997; Neave et al., 1997). Bmp and Wnt signaling molecules 
and activities have not yet been investigated significantly and in a comparative 
manner between cavefish and surface fish embryos, but it is well established 
that Hedgehog expression (Sonic and Tiggy-Winckle) is expanded at the ante-
rior ventral midline during gastrulation (Pottin et al., 2011; Yamamoto et al., 
2004; Figure 12.3(A)). Such Hedgehog hypersignaling from the mesoderm 
in the cavefish gastrula is indirectly responsible, through unknown mecha-
nisms, for lens apoptosis and subsequent eye loss (Yamamoto et al., 2004). 
As demonstrated by pharmacological manipulations, Hedgehog hypersignal-
ing also affects the precise onset of expression of other signaling molecules 
such as Fgf8, although it does not apparently change Fgf3 expression (Pottin 
et al., 2011; Figure 12.3(A)). In fact, Hedgehog heterotopy (expanded ex-
pression) and Fgf8 heterochrony (earlier expression) at the anterior margin 
of the cavefish neural plate affects the patterning and morphogenesis of its 
future forebrain. Both the expression patterns of several transcription factors 
that prefigure the presumptive territories of the retina and other forebrain re-
gions (Pax6, Lhx2/Lhx9) and the neural plate fate map are slightly modified 
in cavefish, precisely at midline level where Hedgehog and Fgf8 signaling are 
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changed (Pottin et al., 2011; Strickler et al., 2001; Figure 12.3(B)). We have 
proposed that medial neural plate cells that are normally fated to become the 
ventral part of the retina instead contribute to the hypothalamus in cavefish 
(Pottin et al., 2011). At the end of neurulation, the resulting morphology is an 
eye with a missing ventral quadrant and a forebrain with an enlarged presump-
tive hypothalamic territory (Figure 12.3(C) and (D)).

FIGURE 12.3 Comparing the neural plate and embryonic brain morphogenesis in Astyanax sur-
face fish and Pachón cavefish. The first and second columns show surface fish and cavefish, re-
spectively. In the third column, the patterning and morphogenetic effects of Hedgehog signaling 
inhibition by cyclopamine or FgfR signaling inhibition by SU5402 on Pachón embryos are de-
picted and resemble the surface fish phenotype. Schemas are drawn according to experimental evi-
dences from several articles (Menuet et al., 2007; Pottin et al., 2011; Rétaux et al., 2008; Yamamoto 
et al., 2004). (A) Signaling systems at neural plate stage, schematized on a dorsal view (anterior is 
up). Shh expression (dark/purple at the midline) is larger and Fgf8 expression (gray/orange at the 
 anterior neural border) is earlier in cavefish. Note: Fgf8 is not expressed at this early stage in surface 
fish. (B) Neural fate map and neural plate patterning. The regions of the neural plate fated to become 
the hypothalamus and the retina are indicated. Several anterior neural plate genes (Lhx2, Lhx9, Zic1, 
and Pax6) show a lack of expression at the cavefish midline (gray). In surface fish embryos, these 
midline cells are fated to give rise to the ventral quadrant of the retina, which is absent in cavefish. 
In cavefish, cells located in the equivalent zone of the neural plate (gray triangle) contribute to the 
hypothalamus or the dorsal retina. (C) Size of the hypothalamus, as labeled by Nkx2.1a, on a lateral 
view of a schematic brain at 24 hpf (anterior is left and dorsal is up). (D) Morphology of the eye. 
Black brackets indicate the ventral quadrant of the retina, strongly reduced in cavefish and restored 
after SU5402 treatment. Pigment cells on the surface fish eye are drawn.
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Importantly, Shh expression is also expanded in Chica and Los Sabinos em-
bryos, and their Pax6 medial neural plate pattern is modified the same way as in 
Pachón embryos (Jeffery, 2009; Strickler et al., 2001; Yamamoto et al., 2004). 
This tells us that similar developmental processes are modulated in indepen-
dently evolved cavefish populations, and give rise to the same phenotypes. In 
fact and more generally, in cavefish embryos from all populations examined 
so far, the eyes first develop and then regress. This observation can even be 
extended to other cave vertebrates, including mammals, fishes, and amphib-
ians (reviewed in Rétaux and Casane, 2013). Although this could be viewed as 
a waste of energy for a developing embryo, we have proposed that optic cup 
morphogenesis corresponds to a developmental constraint and probably cannot 
be circumvented (Pottin et al., 2011; Rétaux and Casane, 2013). Indeed, from a 
morphogenetic point of view, the vertebrate forebrain cannot develop properly 
without undergoing coordinated cell movements that include the initial forma-
tion of the visual organ (e.g., England et al., 2006; Rembold et al., 2006).

LARVAL BRAIN DEVELOPMENT: ESTABLISHING SUBTLE 
DIFFERENCES

During neurulation and after hatching, cavefish continuously display expanded 
Shh expression in all anterior basal forebrain domains (Menuet et al., 2007). In 
conjunction with the above described consequences of midline-dependent early 
morphogenetic events, sustained Shh hypersignaling affects neuronal patterning 
in a subtle manner—and to an extent that is developmentally tolerable, viable, 
and possibly even adaptive. Indeed, the global regionalization of the cavefish 
brain remains correct and unaffected, as shown by standard expression patterns 
of all “developmental” genes investigated (see Lhx9, e.g., in Figure 12.2(A)).

In the cavefish ventral telencephalon or subpallium, the expression domains 
of Shh, Nkx2.1b (a marker of the medial part of the subpallium and the pre-
optic region) and the Nkx2.1-dependent LIM-homeodomain factors Lhx6 and 
Lhx7 (Grigoriou et al., 1998; Sussel et al., 1999) are enlarged (Menuet et al., 
2007). This enlargement appears specific to ventral telencephalic neural compo-
nents under the control of this particular developmental “cascade,” as the Dlx2 
or Nkx2.2 expression domains are unchanged when compared to surface fish. 
Interestingly, Nkx2.1b and Lhx6 happen to label a population of GABAergic 
interneurons that migrate tangentially to populate the olfactory bulbs (Menuet 
et al., 2007), and that we hypothesized to be the equivalent of the mammalian 
rostral migratory stream (e.g., Lois and Alvarez-Buylla, 1994). As a positive 
correlation between the abundance of olfactory bulb interneurons and olfactory 
performance is reported, it is tempting to speculate that the Shh-dependent in-
crease in GABA/Lhx6/Nkx2.1b-positive migratory stream in cavefish could be 
advantageous for their life in perpetual darkness.

The cavefish hypothalamus, as labeled with Shh, with Nkx2.1a and 
Nkx2.1b regional markers, with Lhx6 subterritory marker, or else as assayed 
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for proliferation (Figure 12.2(B)), appears larger and actively proliferat-
ing compared with surface fish (Menuet et al., 2007; Rétaux et al., 2008). 
Increased proliferation is observed specifically in the hypothalamic and pre-
optic territories, but not in the more dorsally located diencephalic or mes-
encephalic regions (Figure 12.2(B)), and a treatment of cavefish embryos 
with the Shh-signaling inhibitor cyclopamine diminishes hypothalamic pro-
liferation and size. This suggests a region-specific, Shh-dependent control 
of proliferation and possibly neurogenesis in the hypothalamus, opening the 
interesting possibility that this neuroendocrine brain region, which contains 
many neuronal groups expressing neuromodulatory transmitters, such as 
monoamines and neuropeptides, has evolved in cavefish.

Is the entire hypothalamus/preoptic region, then, enlarged in cavefish? Or 
are specific neuronal groups affected, while others are unchanged? Some recent 
insights came from the comparative analysis of the serotonin neurotransmitter 
system (Elipot et al., 2013). First, a 4-h heterochrony exists between the appear-
ance of the first serotonin-expressing neurons in the anterior hypothalamus of 
cavefish (at 18 hpf) and surface fish (at 22 hpf). This may be related to the differ-
ences in proliferation/neurogenesis control discussed above. Second, the result-
ing serotonergic group is larger and contains more cells in cavefish; however, 
the size of other, more posterior hypothalamic serotonin neuronal groups is 
identical in cave and surface larvae (Figure 12.2(C)), showing a finely regulated 
and group-specific regulation of neuron numbers. Third, the size difference in 
the anterior group is Shh-dependent. And finally, this anatomical variation in 
serotonin circuits seems to translate into behavioral differences, namely an in-
crease in foraging behavior (Elipot et al., 2013).

Much remains to be investigated in a comparative manner on neural pattern-
ing, differentiation, and wiring in the larval cavefish brain. But the few aspects 
that have been investigated so far indicate that we will probably discover dis-
crete, specific, and multiple variations in neuronal patterning in cavefish that 
result from early embryonic events that change subtle aspects of behavior, and 
that illustrate the morphogenetic and functional outcomes of developmental 
evolution and variations.

SENSORY SYSTEMS

The idea of a sensory compensation for absence of vision in animals living in 
the dark is “classical” and was proposed by early authors, and has been reg-
ularly reviewed since (Barr, 1968; Niemiller and Poulson, 2010; Soares and 
Niemiller, 2013; Wilkens, 1988). Longer appendages in insects and lateral 
line modifications in fish were often cited. More recently, the idea of sensory 
modules that would either be developmentally and genetically independent, or 
that would interact together, and upon which natural selection could act, has 
been put forward (Franz-Odendaal and Hall, 2006; Wilkens, 2010). Below, we 
briefly review available data on the developmental evolution of chemosensation 



Neural Development in Blind Cavefish Chapter | 12  237

(gustation, olfaction) and mechanosensation (lateral line) systems in Astyanax. 
Of note, although hearing is an important sense for aquatic organisms, differ-
ences in auditory capacities have not been reported for cavefishes, including for 
Astyanax (Popper, 1970).

Chemosensory System

A better chemical sense has long been suggested for cave Astyanax (Breder and 
Rasquin, 1943; Humbach, 1960). Strikingly, according to Humbach's observa-
tion, blind cavefish would have a sense of taste 300 times more acute for bit-
ter and 2000-4000 times more acute for salty, acid, and sweet substances than 
Phoxinus (a minnow, cyprinid); however, these early studies did not strictly 
discriminate between olfaction and gustation.

Olfaction is surprisingly poorly studied. A “classical” development of the 
olfactory organs and their lamellae from ectodermal placodes was described 
in Astyanax (Schemmel, 1967). Quantification of the continuously increasing 
number of olfactory lamellae in surface fish and the Pachón and Los Sabinos 
cavefishes throughout their lives shows no significant difference. Schemmel 
concluded that the olfactory modality cannot be considered as specialized in 
cavefish. He noted, however, that nasal capsules are more opened and flattened 
in cavefish, so that lamellae are more exposed. More recently, using in situ 
recordings in the Subterráneo cave, which hosts a hybrid population of mixed 
troglomorphic and epigean characters, we have found that troglomorphic fish 
present significantly larger naris size, and this was associated with a strong 
behavioral response elicited by food extracts (Bibliowicz et al., 2013), open-
ing the possibility that olfactory abilities might have evolved in cave-dwelling 
Astyanax.

Concerning gustation, Schemmel was also the first to describe an in-
creased number of tastebuds in Los Sabinos, and even more in Pachón cavefish 
(Schemmel, 1967). He reported a several-fold increase in tastebud numbers in 
adults (Schemmel, 1974). More precisely, three different types of tastebuds are 
distributed on the lips and oral cavity of both Astyanax morphs, but only cave-
fish harbor some on their lower jaws (Boudriot and Reutter, 2001). Moreover, 
the nerve fiber plexuses of type II and III tastebuds contain more axons in cave-
fish (Boudriot and Reutter, 2001), and there are more sensory receptor cells per 
tastebud in cavefish (Varatharasan et al., 2009). Such an enlarged and predomi-
nantly ventrally spread gustatory area on the skin of the head was interpreted as 
functionally relevant to localize food situated on the bottom, and considered as 
a compensatory improvement of the sense of taste. Interestingly, Substance P is 
found in tastebuds of cavefish, but not surface fish or other teleosts (Bensouilah 
and Denizot, 1991). These authors have proposed that the presence of this neu-
rotransmitter could modulate the threshold of excitability of the taste cells.

In fact, tastebud number amplification in cavefish is already present in the 
first days post-fertilization (dpf) (Varatharasan et al., 2009; Yamamoto et al., 
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2009), and the rate of tastebud development is accelerated in cavefish larvae; 
the difference with surface fish larvae is small at 5 dpf, but threefold at 22 dpf 
(Varatharasan et al., 2009). That these differences are detectable only after the 
onset of eye degeneration and that they increase during the degeneration process 
suggests a link between gustatory and visual development, a notion that is sup-
ported by functional experiments (Yamamoto et al., 2009): (1) Shh hypersignal-
ing in the oropharyngeal region of cavefish embryos is responsible for tastebud 
number amplification; (2) early conditional overexpression of Shh in surface 
fish induces positive effects on later tastebud development and negative effects 
on eye development in the same embryos; and (3) there is an inverse relation-
ship between eye size and tastebud number in the progeny of crosses between 
surface and cave Astyanax. This constitutes the only example to date of a direct 
link between the development of two sensory organs involving a pleiotropic 
effect of Shh and suggesting indirect selection as an evolutionary driving force 
for eye loss in cavefish.

Lateral Line

It has been long known that cavefish (Pachón, Los Sabinos, Chica) pos-
sess more free (superficial) neuromasts in the suborbital region of their face, 
and more fragmentation of infraorbital canal neuromasts than surface fish 
(Bensouilah and Denizot, 1991; Jeffery et al., 2000; Schemmel, 1967). More 
recently, Yoshizawa and colleagues (2010, 2012) have reported that neuromasts 
found at a high density in the suborbital and eye orbit region of cavefish medi-
ate the vibration attraction behavior (VAB). Indeed, cavefish are specifically 
attracted by vibrations at about 35 Hz at the surface of the water, a behavior that 
clearly seems advantageous to find food in the dark (Yoshizawa et al., 2010). 
Of note, the morphology of cavefish sensory receptors also differ; the cupula 
(hair stereo-cilia covered by gelatinous case) of their free head neuromasts is 
up to 300 μm in length, compared to about 42 μm in surface fish (Teyke, 1990; 
see also Varatharasan et al., 2009), and is also larger, as are the neuromasts 
themselves (Yoshizawa et al., 2010). As the height and diameter of the cupula 
regulate sensitivity, these large, free neuromasts are twice as sensitive in young 
adults than smaller ones (Yoshizawa et al., 2014). This could explain why cave-
fish neuromasts can detect low frequency stimuli (below 50 Hz) in otherwise 
calm cave pools.

The cavefish VAB-mediating neuromasts develop late, after 2 months of 
age, when the eye is completely gone (Yoshizawa et al., 2010), which may ex-
plain why they invade the cavefish eye orbit region. Moreover, and contrarily to 
the case of tastebuds discussed above, experimental induction of eye regression 
in surface fish via Hedgehog overexpression is insufficient to increase the num-
ber of orbital neuromasts or to promote the appearance of the VAB (Yoshizawa 
et al., 2012). It will, therefore, be crucial to understand the developmental 
mechanisms controlling the timing of head neuromast organogenesis and the 
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size of individual sensory organs, as well as to determine the neuronal circuits 
underpinning the VAB. Considering that some cavefish populations (Pachón, 
Los Sabinos, or Piedras), but not others (Molino), exhibit a strong form of VAB, 
this system is ideal to investigate the origin of neural and behavioral novelty 
during evolution.

CAVEFISH BRAIN NEUROCHEMISTRY

The ensemble of cavefish behavioral modifications described in the introduc-
tion is sometimes referred to as a “behavioral syndrome,” which would appear 
quite pathological to a clinician, to whom the cavefish condition would prob-
ably evoke disorders involving neuromodulatory and aminergic transmission. 
Actually, we currently know two genes that are important players in these neu-
rotransmitter systems, and which carry mutations in their coding sequence in 
cavefish: Oca2 and monoamine oxidase (MAO) (Elipot et al., 2014a; Protas 
et al., 2006). Moreover, several relevant genes (such as the 14-3-3 protein 
YWHAE, the glutamate receptor AMPA2 or the cannabinoid receptor CB1) 
whose expression is altered in cavefish were recently identified through a mi-
croarray study (Strickler and Soares, 2011). These genes play roles in neural 
networks controlling learning, feeding, or addiction, and could therefore under-
lie some of the cavefish behavioral phenotypes.

Oca2 (ocular and cutaneous albinism-2) is a transmembrane protein in-
volved in the transport of l-tyrosine, the precursor of melanine, into melano-
somes. Its mutation in cavefish (Protas et al., 2006) explains the depigmented 
phenotype that is reviewed in Chapter 8 of this book (Jeffery et al.). But l- 
tyrosine also happens to be the precursor of dopamine and noradrenalin, two 
central monoamines, therefore opening the possibility that an expanded l- 
tyrosine pool is available as a precursor for dopamine in cavefish. In line with 
this idea, Oca2 morpholino knockdown in surface fish embryos increases both 
l-tyrosine and dopamine levels (Bilandžija et al., 2013b), and dopamine and 
noradrenalin levels are very high in the brains of young adult cavefish when 
compared with surface fish (Elipot et al., 2014a). Importantly, Oca2 carries 
different loss of function mutations in various Astyanax cavefish populations 
(Protas et al., 2006) and more generally, the first step in melanin synthesis is 
also affected in other cave-dwelling animals, including insects (Bilandžija et al., 
2013a), showing striking convergence on a defect in this particular pathway. Of 
note, the direct link between a large pool of available l-tyrosine due to the Oca2 
deficiency and the high levels of dopamine in the brain of cavefish remains 
unclear, because the activity of tyrosine hydroxylase, the rate-limiting enzyme 
of dopamine synthesis, is identical in the brains of surface and cave morphs 
(Elipot et al., 2014a). An interesting research venue may be offered by the fact 
that the dopamine synthesis activator gene YWHAE is up-regulated in cavefish 
(Strickler and Soares, 2011). Finally and behaviorally, high noradrenalin lev-
els in cavefish probably play a role in reduced sleep/increased wakefulness, as 
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suggested by sleep rescue after beta-noradrenergic receptor blockade (Duboue 
et al., 2012). And high dopamine levels may underlie feeding drive and reward-
associated responses (Singh, 2014).

MAO is the serotonin-degrading enzyme. It carries a partial loss-of-function 
point mutation in Pachón cavefish, leading to very high serotonin levels in the 
brain (Elipot et al., 2014a). Note that there is only one form of MAO in teleosts, 
whereas mammals have two. Combined with the larger anterior hypothalamic 
serotonergic group, this mutation could contribute to the cavefish's persistent 
foraging behavior (Elipot et al., 2013). The MAO mutation is also likely to ex-
plain other cavefish behavioral phenotypes; in surface fish treated with deprenyl, 
a specific MAO inhibitor, serotonin levels (but not dopamine or noradrenalin) are 
increased, therefore mimicking the cavefish condition (Elipot et al., 2014a), and 
both schooling behavior (Kowalko et al., 2013) and hierarchical aggressiveness 
(Elipot et al., 2013) are lost. The serotonergic raphe nucleus in the hindbrain 
is probably involved in the loss of aggressiveness. Indeed, low raphe serotonin 
levels are associated with dominant individuals in surface fish groups, and it is 
possible to elicit some aggressiveness in cavefish by embryonic manipulations 
that reduce the size of their raphe serotonergic nucleus (Elipot et al., 2013). On 
the other hand, the serotonin-dependent brain circuits involved in loss of school-
ing are unknown, but we have proposed that the lack of collective behaviors in 
cavefish is probably tightly related to their loss of hierarchical and aggressive 
behavior (Rétaux and Elipot, 2013 and see also this book, Chapter 17).

In sum, we are at the beginnings of our understanding of cavefish brain 
neurochemistry, but all the data accumulated so far suggest that the subtle equi-
librium and neurotransmission homeostasis present in vertebrate brains are 
unbalanced in more than a few ways in cavefish. Along the same lines, some 
“general” neurotransmission genes, such as neuroligin or the neurofilament 
protein M seem up- or down-regulated in cavefish, respectively, according to 
cross-species (zebrafish) microarray experiments (Strickler and Jeffery, 2009). 
Neuroligin is a postsynaptic adhesion molecule thought to control the balance 
between excitatory and inhibitory synapses (Mackowiak et al., 2014) and NF-M 
is a cytoskeleton component that regulates axonal growth and homeostasis 
(Yuan et al., 2012). Therefore, such dysregulations might also have general ef-
fects on cavefish neural functions, but their origin and their exact impacts have 
not yet been investigated.

CONCLUSIONS AND PERSPECTIVES

The Astyanax model system is now entering the genome era, with the available 
Pachón genome (McGaugh et al., 2014) and the exciting possibilities offered 
by transgenesis and genome-editing techniques (Elipot et al., 2014b; see also 
Chapter 19 by Burgess et al. in this book). Such progress will render possible 
many new lines of investigations. Comparative genomics will allow the investi-
gation of cis-regulatory aspects in the evolution of gene regulation. Loss and gain 
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of function experiments in cave and surface morphs will decipher the exact roles 
and effects of mutations identified in cavefish. With the generation of transgenic 
fluorescent reporter cavefish and surface fish lines, researchers will be able to 
compare early cavefish brain morphogenesis and growth by 3D live imaging, or 
to analyze and manipulate neuronal activity in vivo. In other words, the cavefish 
has become a top model for neuroscience research for investigators interested in 
brain evolution and morphological, functional, and behavioral adaptation.
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