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Animal societies are often structurally complex. How individuals are

positioned within the wider social network (i.e. their indirect social con-

nections) has been shown to be repeatable, heritable and related to key

life-history variables. Yet, there remains a general lack of understanding

surrounding how complex network positions arise, whether they indicate

active multifaceted social decisions by individuals, and how natural selection

could act on this variation. We use simulations to assess how variation in

simple social association rules between individuals can determine their

positions within emerging social networks. Our results show that metrics

of individuals’ indirect connections can be more strongly related to under-

lying simple social differences than metrics of their dyadic connections.

External influences causing network noise (typical of animal social networks)

generally inflated these differences. The findings demonstrate that relation-

ships between complex network positions and other behaviours or fitness

components do not provide sufficient evidence for the presence, or impor-

tance, of complex social behaviours, even if direct network metrics provide

less explanatory power than indirect ones. Interestingly however, a plausible

and straightforward heritable basis for complex network positions can arise

from simple social differences, which in turn creates potential for selection

to act on indirect connections.
1. Introduction
Societies across the animal kingdom, ranging from humans to insects, are often

characterized by complex organization [1,2]. It is the social behaviour of indi-

viduals within the population that gives rise to the intricate structure of

social systems [3–5]. Indeed, within such systems, individuals differ in the

manners in which they interact with others and in the strength and extent of

social relationships [6–9]. Much of the study of animal social behaviour aims

to understand these differences between individuals, including the selective

pressures that have shaped and maintained them, their implications for our

understanding of divergent social strategies and their physiological and genetic

underpinnings [5,10,11].

One of the major complexities in the study of individual variation in social

behaviour results from the fact that the social environment almost always consists

of a polyadic network of non-independent social ties [12,13]. Animals are con-

nected to the individuals with whom they associate with directly (direct

connections), but are also tied indirectly to the partners of their social partners

(indirect connections) [8,13–15]. Social network analysis has become a popular

tool for animal social behaviour research [14,16] as it allows researchers to look

beyond how individuals differ at the level of direct, dyadic, associations and to

explore how animals are positioned in the wider social environment [13]. The
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many different measures of individuals’ general social central-

ity or integration within a social network allows their indirect

connections and network positions to be quantified in various

ways. For example, commonly considered metrics include:

‘eigenvector centrality’, which sums their associates’ associ-

ations; ‘betweenness’, which calculates how many of the

shortest social paths between others in the network pass

through them; and ‘closeness’, which measures their social

distance to every other individual [13].

Many questions remain regarding the importance of indir-

ect network connections and what these metrics can tell us

about animal social behaviour [13,17]. Indirect connections

are, by definition, an emergent feature of associations between

pairs of individuals. Yet the extent of information regarding

polyadic connections that individuals possess, and whether

they can use this to influence their social environment, is lar-

gely unknown. Whether the relationships between indirect

network positions and wider traits (e.g. fitness) are evidence

of the importance of indirect connections, or whether simpler,

and perhaps more parsimonious, explanations underpin such

findings also needs to be established. Further, how complex

network positions, which intrinsically depend upon the

direct social associations among pairs of others, can be repeata-

ble, heritable, or the target of selection at the individual-level

remains uncertain.

Despite the lack of clarity surrounding these fundamental

issues regarding indirect connections, recent findings have

shown that an individual’s tendency to be indirectly connected

to others can be consistent [9,18,19], even following disturb-

ance [20–22], heritable [9,23,24], and strongly related to

other variables of interest, including the likelihood of contract-

ing disease [25–28], obtaining new information [29,30], or of

leading group movements [31]. Indirect connections have

even been associated with proxies of fitness, with studies

reporting positive associations between indirect network

metrics and an individual’s future social status [32–34], survi-

val [35], and reproductive output [9,34,36–38]. A growing

number of studies have found effects of indirect connections

even after controlling for dyadic associations, and an even

greater relative importance of these complex metrics than

direct dyadic ones (reviewed in [13] and more recent studies

thereafter [37,38]). This has led to various conclusions regarding

the importance of indirect connections within societies.

Extended interpretations surrounding complex network

positions have suggested that the consequences of indirect

connections stem from individuals actively undertaking

complex social manoeuvres and making decisions based on

their understanding of the wider network structure and

relationships between third parties [37,38]. These suggestions

certainly fit well with evidence suggesting that some species

have the ability to obtain social information in an indirect

manner. For example, cichlids may infer the relative domi-

nance status of pairs of males using information on the

pairs’ relative status with other fish [39]; primates and corvids

appear to eavesdrop on the relationships between pairs of

third parties [40,41], and to shape their behaviour around

others’ social bonds [42–45]. Further, it has recently been

reported that the human brain may be capable of spon-

taneously encoding the indirect network positions of others

[46–48]. These results, combined with the fitness correlates

of indirect metrics described above, may even suggest that

selection is acting directly to shape not just the dyadic, but

also the polyadic social world.
Identifying how simple differences between individuals

can generate differences in their complex indirect network pos-

itions not only helps avoid misleading conclusions about social

structure, but is also important for understanding how both

simple social behaviours and complex social network struc-

tures can evolve. In this study, we use a simulation approach

to assess how direct social network metrics (quantified using

social associations at a dyadic level) and indirect network

metrics (intended for quantifying higher-level structure)

emerge from simple differences in individuals’ association pat-

terns. By creating different social scenarios, we determine how

basic sources of individual variation in terms of social associ-

ations can actually be more strongly predictive of indirect

network metrics than direct network metrics. Further, we

examine how external processes that shape the network itself

(or how we measure it), can affect the relationship between

simple social differences and variation in social network

metrics. We highlight the importance of understanding the

relationships between simple association patterns and network

positions for drawing conclusions in relation to the causes of

variation, and how such relationships allow the repeatability,

heritability, and the selection of complex social positions to

result from relatively simple mechanisms.
2. Material and methods
(a) General framework
In research on empirical social networks, the data are based upon

the social association patterns observed within the inferred social

network. Therefore, underlying social differences between indi-

viduals are deduced from their positions within the social

network (social network metrics). These measures of individuals’

social network positions are then often used in analyses relating

to various other traits/processes, from which conclusions are

drawn about the causes and consequences of individuals’

social behaviour [1,14]

For example, if a metric considering the sum of individuals’

indirect social associations (i.e. their associates’ social associ-

ations—‘eigenvector centrality’) held a stronger relationship to

their fitness than a metric measuring the sum of their direct

social associations (i.e. how often they associate with others—

‘weighted degree’ or ‘strength’), it might be concluded that indi-

viduals’ propensity to indirectly associate with others (e.g. by

associating with others who themselves have lots of associations)

is more important to fitness than simply their propensity to associ-

ate with others [37,38]. Therefore, drawing conclusions related to

underlying differences in social behaviour often relies on the

assumption that the network metric used as a proxy of the under-

lying social differences is accurate, and more related to this social

behaviour than the other network metrics it is been compared to.

However, within the field of animal social networks, it has been

notoriously difficult to assess how social network metrics actually

effectively relate to underlying social differences, and the conse-

quences of this. Therefore, we use a computational approach that

allows us to vary individuals’ underlying social association pat-

terns, simulate the arising social network, and subsequently

assess how the initially specified variation can be recovered

using social network metrics. In particular, we aim to determine

how direct social network metrics and indirect social network

metrics (see below) are generated from simple social differences

between individuals.

We separately considered three simple scenarios, each with its

own specified process underlying social differences between indi-

viduals. For each of these three scenarios, we carried out

simulations where social associations occurred at random apart

http://rspb.royalsocietypublishing.org/
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from the specified scenario to generate the arising social networks.

Within the simulations, each individual was randomly assigned a

trait value from a standard uniform distribution on which their

social differences were conditioned (see electronic supplementary

methods for details). Each simulation consisted of 1 000 individ-

uals with, on average, 100 associations assigned to each

individual (but see electronic supplementary information for

variations of this).

First, we considered individuals’ general sociability (GS) as the

number of individuals that a focal individual generally associates

with (which is also analogous to gregariousness or average

group size). In this simulation scenario, we assigned individuals

to ‘grouping events’ based on their trait value, whereby those

with high GS had a higher probability of occurring in larger group-

ing events than those with a low GS. Grouping events ranged in

size from 1–10 individuals (but see electronic supplementary

information for variations). All individuals within a grouping

event were classed as holding an association to one another. This

is similar to the commonly used ‘gambit of the group’ approach

whereby spatio-temporally clustered individuals are considered

associated [49,50]. This process was carried out until, on average,

each individual had engaged in 100 associations (see electronic

supplementary methods).

In a second scenario, individuals were set to vary in their

‘reassociation tendency’ (RT), which was defined as their propen-

sity to reassociate with individuals they had associated with

before. Each association was assigned one-by-one by selecting

an individual within a random step-wise process (see electronic

supplementary methods). The probability that the association

was then directed towards either a random previous associate

of the selected individual, or to a random new associate of the

selected individual, was directly proportional to the selected

individual’s trait value. Therefore, those with lower RT had a

lower social stability and were more likely to associate with

others they had not associated with previously.

Finally, we varied individuals’ ‘within-group association’

(WGA) i.e. their likelihood of associating with their own group

members over non-group members. The ‘groups’ defined here

could be analogous to any predetermined social groups, such as

cliques, animals who share the same home-range, or even a

shared phenotype. Individuals were randomly assigned to equally

sized ‘groups’ at the beginning of each simulation (100 separate

groups of 10 individuals in the primary analysis, but see electro-

nic supplementary information for variations). Associations were

then assigned between dyads on the basis of both of the individ-

uals’ trait values and whether or not they were in the same

preset ‘group’ (see electronic supplementary methods). In this

way, higher WGA values increased an individual’s propensity to

direct more of their associations towards those categorized as

being in the same ‘group’ as themselves, while lower

WGA increased the likelihood of engaging in associations with

different individuals.
(b) Variation in social network positions
Upon generating the social networks under the three scenarios, we

then examined how the initially specified social differences (i.e.

trait values) related to variation in social network metrics (or

‘social network positions’). Therefore, for each of the scenarios,

we first calculated the relationship between the trait value and

the relevant simple metric usually used for measuring such differ-

ences directly (see below). Then we calculated the relationship

between the trait value and a relevant complex metric that incor-

porates information on indirect connections [13,38]. Such metrics

are usually used to infer more complex processes than single-

dimension variation in dyadic social associations. However, by

incorporating information on the wider social structure as well

as the individual’s own associations, this may provide a better
description of simple social behaviours in emerging networks

(see below and Discussion for further details).

Specifically, when simulating GS variation, we used ‘weighted

degree’ as the simple direct metric. This measure represents the

sum of an individual’s dyadic associations to others and is thus

often used with the intention that it is a direct measure of the GS

of an individual. We used ‘eigenvector centrality’ as the indirect

metric, which is derived from the sum of each individual’s associ-

ates’ associations (i.e. their ‘second-order associations’). This

complex metric is usually used with the intention of describing

individuals’ propensity to form connections with highly connected

individuals. However, eigenvector centrality may relate to initial

GS due to incorporating information on individuals’ associates’

associations when assortment by degree can arise due to passive

processes [51,52].

In the reassociation tendency (RT) variation simulations we

used ‘average edge weight’ (or ‘mean non-zero edge weight’) as

the intuitive direct metric, which is an individual’s mean dyadic

association strength to each of their associates. Thus, this may be

viewed as a direct measure of RT (or social stability), with those pos-

sessing the strongest bonds (i.e. high average edge weights) having

the highest RT. As a relevant, but more complicated metric, we used

‘betweenness centrality’, calculated as the number of shortest paths

between all individuals in the network that pass through the focal

individual. This is commonly used to infer the extent to which indi-

viduals act as a ‘bridge’ within the network, and, therefore, those

that may be particularly important to information and disease

spread [14]. In this case, betweenness may be expected to correlate

with RT as differences in stability of associations could give rise to

variation in the amount of mixing individuals engage in within

the resultant network.

Finally, when simulating variation in WGA, we calculated

individuals’ ‘EI index’ that is used as a direct measure of WGAs

in relation to out-group associations (ranging from 21 to þ1,

where 21 ¼ all associations directed to non-group members and

þ1 ¼ all associations held are with group members, and 0 ¼

equal number of associations with group and non-group mem-

bers). As the indirect complex metric, we used ‘closeness’, which

assesses the path length of the focal individual to every other indi-

vidual within the network. As segregation arises when distinct

classes/groups exist, those which are most likely to focus their

associations towards their own class/group may be expected to

be relatively distant from the majority of others within the wider

network, whilst those with more equal mixing will experience

higher general ‘closeness’ within the network.
(c) Network noise
Together with consistent social differences between individuals,

the structure of empirically derived social networks are likely to

be subject to noise, such as due to external processes or imperfect

observation and inference due to the wide variety of sampling

intensities and accuracies across studies [53,54]. It is, therefore,

important to gain insight into how such noise may influence the

strength of, and our quantification of, the relationship that speci-

fied sources of individual variation holds with direct dyadic

network metrics and complex indirect metrics.

We examined four types of noise processes separately: (i) link

removal is the deletion of social associations between dyads

(figure 1a) and (ii) node removal is the deletion of individuals

and their social associations to others (figure 1b). Either of these

deletion processes may arise from incomplete observation or

limited sampling of a population. Therefore, carrying out these

removal processes at different intensities on generated networks

mimics the effect of different levels of sampling intensities of indi-

viduals or associations between individuals. Alternatively, the

deletion processes could also be viewed as similar to external fac-

tors that put limitations on which individuals can interact or are

http://rspb.royalsocietypublishing.org/
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ations between them (central network). The surrounding networks show (a) link removal, (b) node removal, (c) link rewiring, and (d ) node rewiring. Each of the
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consistently present in the system. (iii) Link rewiring refers to reas-

signment of social associations between random triads, whereby

the value of the social association between individual ‘A’ and indi-

vidual ‘B’ would be swapped with the social association between

individual ‘A’ and individual ‘C’, thus the strengths of the social

associations between dyads are randomized (even if it was pre-

viously zero) (figure 1c). (iv) Node rewiring is randomizing the

identity (and all associated information) of a subset of individuals

(figure 1d). Either of these rewiring processes may arise from

imperfect inference of associations or individual identification

(which again may be related to sampling intensities), or external

influences and other factors determining which interactions actu-

ally take place. We generated each noise process (i.e. removal

and rewiring of links or nodes) ranging from 10% to 90% of links

or nodes selected for removal or rewiring. This was carried out

in intervals of 10% on final versions of the simulated networks aris-

ing from each scenario. We carried out 1 000 simulations of each

noise process (n ¼ 4) for networks generated from each scenario

described above (n ¼ 3) at each different level (0% to 90%)

resulting in 120 different types of simulated network (360 includ-

ing electronic supplementary information variations) and a total

of 1 200 000 networks (3 600 000 including electronic supplemen-

tary information). In each case, we examined the relationship

between the initially specified simple trait values of individuals
and their relevant direct and indirect metrics calculated from the

simulated network.
3. Results
As expected, the simulations gave rise to fully connected net-

works of different structures (figure 2). The differences in

structures were maintained when various types of noise/

error (figure 1) were inputted even at relatively high levels

(electronic supplementary material, figure S1).

The absolute value of the ranked correlation of the simple

initial trait with the direct metrics and with the indirect metrics

provides an intuitive measure of which type of metric is most

related to the initial social differences. First, when considering

simulation scenario (1) individuals’ GS correlated more with

their complex indirect social network position (eigenvector

centrality) than the simple direct measure (weighted degree),

even before any simulated noise (i.e. the start point in

figure 3a). With increasing levels of link removal (randomly

deleting associations), the strength of the relationship between

the initially specified social differences and both direct and

http://rspb.royalsocietypublishing.org/
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Figure 2. Example networks from each of the three simple scenarios of indi-
vidual variation in (a) GS, (b) RT, and (c) WGA. All three panels show the
networks using the baseline specifications (1 000 individuals, an average of
100 associations per individual) before any noise/error. (a) Points show indi-
viduals and colour denotes their initial trait value (blue, low; red, high). Lines
show social links between individuals, and line thickness shows strength of
the social link (number of associations). Points are laid out in a circular format
that minimizes overlap between links. See electronic supplementary material,
figure S1 for example networks with noise.
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indirect social network metrics decreased (particularly with

more than 50% noise) but eigenvector centrality always

remained the stronger predictor of GS.
A similar pattern was also found for the second simulation

scenario, as individuals’ RT was more strongly related to their

betweenness centrality (the indirect metric) than their average

bond strength (direct metric). In this scenario, this difference

was exaggerated with increasing link removal, as the corre-

lation between reassociation tendency and average bond

strength declined more than its correlation with the indirect

network metric of betweenness (figure 3b).

Finally, the direct measure of in-group out-group ties (the

EI index) was a slightly better predictor of variation in individ-

uals’ WGA before any noise was introduced. But, increasing

the proportion of nodes removed rapidly resulted in the indir-

ect metric (closeness) being more strongly correlated to WGA

than the direct metric. This was due to the EI index suffering

a greater reduction in prediction ability with increased error

(figure 3c). For all three scenarios, removing nodes appea-

red to differ slightly from removing links in how it affected

overall network structure (electronic supplementary material,

figure S1). However, the extent to which indirect metrics

were more strongly related than direct metrics to the under-

lying social differences under increased node removal

generally mimicked that of increased link removal (as

described above) over all three scenarios (figure 3d– f).
We also considered how rewiring aspects of the network

(links and nodes), rather than removing them, influenced the

relationship between the specified social differences and the

direct and indirect metrics across the three different scenarios

(figure 4). Increased link rewiring reduced the difference

between the indirect metric and the direct metric, as eigenvector

centrality and weighted degree were similarly correlated to GS

when more than 50% of links were rewired (figure 4a). Under

the RT and WGA scenarios however, link rewiring increased

the difference between the direct (average edge weight and EI

index, respectively) and the indirect metrics’ (betweenness

and closeness, respectively) correlations to the initial social

differences (RT and WGA, respectively) (figure 4b,c). This

resulted in the indirect metrics being even more strongly related

to the initial social differences than the direct metrics. In both

cases, although the correlation remained highest for the indirect

metrics across all levels of rewiring, the raw differences (but not

proportional differences) in predictive ability decreased as more

than 60% of links were randomized (figure 4b,c).

Rewiring nodes (i.e. randomly swapping individuals’

positions) caused a similar linear decrease in the correlations

between social differences in the GS and RT scenarios and

both direct and indirect metrics (figure 4d,e). Although

the raw difference in the correlations decreased slightly

(figure 4d,e), it should be noted that the proportional difference

between these correlations remained the same with increasing

node rewiring, thus the initial slight advantage of the indirect

metrics was maintained. Although the correlation between

WGA and the indirect metric (closeness) again decreased line-

arly, the direct metric (EI index) suffered a larger decrease in

predictive power under increased node rewiring (figure 4f ).
Intuitively, the decreasing relationship between WGA and

the EI index under node rewiring is driven by assigning

individuals to positions unrelated to their actual group.

Overall, indirect metrics generally provided a much more

robust representation of the specified source of individual vari-

ation—even within these rather simple scenarios (figures 3

and 4). However, to further verify the conclusions from these

simulations, we carried out supplementary analyses consider-

ing networks of different sizes and variations (see electronic

http://rspb.royalsocietypublishing.org/
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supplementary methods). We found that all the same patterns

as described above were replicated when considering smaller

networks (electronic supplementary material, figure S2–3),

larger networks (electronic supplementary material, figure

S4–5) as well as when altering the core aspects of the scenario

specifications (electronic supplementary material, figure S6–7)

i.e. varying co-occurrence sizes in scenario 1 (GS), stability

level in scenario 2 (RT), and number of preset groups for scen-

ario 3 (WGA). Thus, the results found within the primary

setting were generalizable to the different circumstances and

variations of the analysis.
4. Discussion
We use simulations to show that individual variation based on

simple, dyadic-based, social rules can be more strongly related
to indirect metrics of social network position than direct

measures. We show that this difference can be further exagger-

ated under random noise that frequently characterizes social

network data in animal populations. These findings echo

previous research showing that complex collective and group-

level patterns can be explained by simple rules [31,55,56]. In

this case, our results show how simple social differences can

explain the causes of variation in complex network metrics.

The results have direct implications for: (i) interpreting social

network positions, (ii) understanding how selection may act

on social systems through simple means, and (iii) considering

how individual variation gives rise to overall network structure.
(a) Interpreting social network positions
Our findings contribute to the debate regarding the complex-

ity of individual-level behaviour needed to generate complex

http://rspb.royalsocietypublishing.org/
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patterns within a system [13,55,57,58]. For example, we show

that simple differences in the number of associates with which

individuals occur can ultimately govern whether they associate

with highly central individuals or with peripheral indivi-

duals (i.e. variation in eigenvector centrality). Importantly, the

initial source of variation holds a stronger relationship to a com-

plex network metric than it does to a measure that directly

considers associations with others (weighted degree). Individ-

uals need not, therefore, actively shape this complex network

position—for instance by preferentially engaging in associ-

ations with high centrality individuals—for a correlation

between eigenvector centrality and individual-level traits to

arise. In the same sense, any trait of interest with a stronger

relationship to a complex measure need not necessarily be

linked to an individual’s innate propensity to engage in
complex social behaviour, but rather could be generated by a

simpler mechanism.

Along with the clear implications for interpreting results

within animal systems, our findings have some relevance for

understanding human behaviour. For instance, recent studies

monitoring brain activity suggested that humans are able to

spontaneously identify the complex (indirect) network pos-

itions of others [47,48,59]. However, if unmeasured simple

behaviours or traits hold relatively strong relationships to indir-

ect metrics, humans may simply use these traits as a general

cue of indirect social connections. Indeed, modelling and

empirical research has demonstrated that individuals can

infer the complex network position of others in terms of their

propensity to spread information using simple dyadic-level

cues with no knowledge of overall structure [30,60]. Thus,

http://rspb.royalsocietypublishing.org/
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even if humans within networks have little knowledge of its

structure [61,62], the relationship between simple traits and

complex metrics may produce patterns which imply the oppo-

site. Nevertheless, across all systems, even if indirect social

metrics do not provide evidence of complex social mechanics

at the individual level, we also point out that the demonstrated

resilience to noise (figures 3 and 4; electronic supplementary

material, S2–S7) may mean that they do offer a robust indi-

cation of social differences between individuals (whether or

not this is complex).

Although previous research reporting relationships

between indirect metrics and other processes does not necess-

arily imply complex behavioural processes, equally, we do not

suggest that such phenomena can be ruled out. Future work

using novel approaches to clearly assess whether, and how,

certain animals (including humans) infer the network positions

of others and shape their indirect associations would be of

great interest. For such conclusions to be drawn, methodologi-

cal approaches which allow the separation of simple dyadic-

level behaviour and complex social behaviour from observed

social network data would be valuable. For instance, future

work trying to separate the effects of indirect network positions

over and above simple behaviours on other variables (such as

fitness) will likely require appropriate null models that are con-

ditioned on the simple behaviours themselves, rather than on

the network, i.e. permutations of the raw behavioural data

[53,63] or simulation models parameterized on the system

itself. Simply controlling for other network properties (i.e.

direct metrics) will not adequately rule out the influence of

simple social differences on arising indirect metrics. Further,

novel experiments that manipulate simple behaviours and

examine the resultant consequences for social networks

[21,64], and the consequences of this for social processes [65],

would be particularly useful in elucidating the relationship

between simple behaviours and arising network metrics, and

their causal relationships with other variables.

In the light of our findings, we advise that studies demon-

strating a relationship between an aspect of interest (e.g. a

particular trait, process, or measure) and indirect social net-

work metrics do not necessarily indicate that indirect, or

complex, social behavioural differences are present or hold

any particular importance (even if direct metrics provide

less explanation). This is particularly relevant to animal

social networks, when the factors driving underlying behav-

ioural differences usually are unknown and social network

metrics are instead used as a proxy for those factors [14].

(b) Selection on social network positions
Our findings also have implications for understanding how

selection may act on social network positions of individuals.

Although previous research has reported links between

individual fitness and complex social network positions

[9,32–38], the mechanisms driving such relationships, as well

as the heritable basis of such complex differences, remains less

intuitive. Indeed, how complex indirect network positions,

which essentially rely upon the connections between third

parties, could be heritable (or even repeatable) appears

puzzling—particularly when it is to a greater extent than

direct network measures [9]. The strong causal relationship

between simple underlying social differences and indirect con-

nections within arising networks demonstrated here allows the

heritability of these complex traits through much simpler mech-

anisms. Forexample, if disease spread caused those with highest
betweenness to suffer fitness costs, then a strong link between a

simple trait which could intuitively have a heritable basis (e.g.

tendency to reassociate) and betweenness could allow selection

to act on individuals with the highest betweenness to an even

greater extent than on simpler association metrics. These

phenomena could equally result in higher apparent heritability

of the complex metrics than simple dyadic network metrics [9].

Secondly, the relationship between simple behaviours and

indirect metrics may also allow selection to act on complex net-

work positions indirectly (i.e. as a by-product of selection on a

simple correlated trait). Again, this could be to an even greater

extent than the indirect selection on more simple association

metrics. For example, our simulations suggest if variation in

individuals’ propensity to occur in larger groups was linked

to fitness (whereby the most sociable individuals have higher fit-

ness), this would concurrently cause strong indirect selection on

eigenvector centrality, and this would be stronger than the

selection on individuals’ number of associates.

Thus, the relationship between individual social differ-

ences and indirect metrics creates the potential for selection

to act even more strongly on complex network positions

than simple network metrics, through allowing the heritabil-

ity of complex positions subject directly to selection (as in the

first example) or by indirectly selecting for complex positions

through their association with simple underlying traits (as in

the second example). Both explanations offer convincing and

plausible explanations for how selection can sculpt the entire

network structure more so than would be expected under

selection on simple dyadic network positions. Further work

using selection and quantitative genetic models to intricately

assess this, along with examining how changes in overall net-

work architecture across generations that result may interact

with this, would be of great interest to understanding how

wider social structure evolves.

(c) Individual variation and network structure
The complexity of actual animal societies [53] is likely to be

much greater than considered within the simulations within

this work. Within our study, we only considered social systems

arising from simple social differences, and each were only sub-

jected to one type of random noise process. Natural networks

are likely to be shaped by various processes simultaneously,

and contain combinations of noise processes dependent on

sampling protocol and intensity, and such error may even be

non-random [53,66]. Our findings suggest that increased

levels and types of external network-shaping processes may

cause simple social differences to be relatively more strongly

related to indirect network positions compared to more

direct measures. Thus, the simulations employed here rep-

resent a conservative test of how indirect metrics may be

strongly correlated to simple underlying variation, even in

the absence of complex social behaviour. However, we caution

that we do not suggest that indirect metrics will always univer-

sally be better measures of underlying social variation than

direct metrics. Rather, we aim to emphasize that consideration

should be given to the potential factors shaping network struc-

ture, and that appropriate metrics should be chosen and

conclusions should be drawn carefully.

Mathematical, simulation-based, or empirical studies that

address precisely how social differences give rise to variation

in complex indirect network positions would now also be of

interest. For instance, positive assortativity is a common feature

of many social networks [51], particularly when networks are
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created using the gambit-of-the-group approach [49,50,52].

Our simulations show that simple differences in GS (or

group size preference), cause this positive assortativity (scen-

ario 1—assortativity generally ranging from r ¼ 0.15–0.40

depending on noise/error type) which results in individuals

having associates with similar numbers of associates as them-

selves. Therefore, as eigenvector centrality also includes

information about an individual’s associates’ associates, this

then provides an even more robust measure of an individual’s

underlying behaviour than simply considering their own

associations, i.e. considering an individual’s wider position

within the network enables more accurate estimation of their

dyadic-level behaviour than just considering their dyadic

associations due to the complex patterns that arise even

within simple scenarios. In the same sense, differences in the

stability of individuals’ social ties (i.e. their RT) causes those

engaging in higher levels of mixing to act as bridges within

the network and experience higher betweenness. Additionally,

when distinct classes/groups exist (WGS scenario), segre-

gation within the network arises and individuals who are

most likely to focus their associations towards their own

class/group will be removed from the other classes, whilst

those with more equal mixing will experience higher ‘social

closeness’ within the network. Gaining a broader and more

general understanding of how social positions arise from gen-

erative sources of individual behavioural variation, and the

correlation between these metrics, will further advance our

knowledge of how overall network structure arises [67–69].
5. Conclusion
We show that simple social differences can be more related to

individuals’ indirect connections than to their direct connec-

tions within social networks. Therefore, while indirect

network metrics need not illustrate the presence of complex

social decisions, or their importance for apparent social or

biological processes, the relationship that indirect social pos-

itions hold with simple underlying individual variation

allows for their heritability and for selection to act on them

(and, therefore, wider network structure) through this. We

suggest that future research should now focus on assessing

how natural selection acts on complex network positions,

and on developing new analytical and experimental methods

to assess whether certain species actively shape their indirect

connections and how social structure develops from

underlying individual variation.
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