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Abstract

The genomics revolution has led to the sequencing of a large variety of nonmodel

organisms often referred to as “whole” or “complete” genome assemblies. But how

complete are these, really? Here, we use birds as an example for nonmodel verte-

brates and find that, although suitable in principle for genomic studies, the current

standard of short‐read assemblies misses a significant proportion of the expected

genome size (7% to 42%; mean 20 ± 9%). In particular, regions with strongly deviat-

ing nucleotide composition (e.g., guanine‐cytosine‐[GC]‐rich) and regions highly

enriched in repetitive DNA (e.g., transposable elements and satellite DNA) are usu-

ally underrepresented in assemblies. However, long‐read sequencing technologies

successfully characterize many of these underrepresented GC‐rich or repeat‐rich
regions in several bird genomes. For instance, only ~2% of the expected total base

pairs are missing in the last chicken reference (galGal5). These assemblies still con-

tain thousands of gaps (i.e., fragmented sequences) because some chromosomal

structures (e.g., centromeres) likely contain arrays of repetitive DNA that are too

long to bridge with currently available technologies. We discuss how to minimize

the number of assembly gaps by combining the latest available technologies with

complementary strengths. At last, we emphasize the importance of knowing the

location, size and potential content of assembly gaps when making population

genetic inferences about adjacent genomic regions.
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Among vertebrates, birds currently exhibit one of the highest num-

bers of freely available genome assemblies. For example, as of May

2018, there were 170 mammalian and 101 avian genome assemblies

present in GenBank (https://www.ncbi.nlm.nih.gov/genbank/). While

the genomes of only three bird species (chicken, turkey and zebra

finch) were sequenced by 2010 (Dalloul et al., 2010; Hillier et al.,

2004; Warren et al., 2010), already over 50 were sequenced by

2014 (Ellegren et al., 2012; Poelstra et al., 2014; Zhang et al., 2014)

and over 75 by mid‐2016 (reviewed by Kapusta & Suh, 2017). Hun-

dreds of additional genomes are currently being sequenced by the

Bird 10,000 Genomes (B10K) project, with the ultimate aim of gen-

erating genome assemblies for all bird species (Jarvis, 2016). As of

July 5, 2017, B10K has generated 334 genome assemblies of repre-

sentatives from nearly all avian families (http://b10k.genomics.cn/).
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In parallel to these quantity‐focused efforts, others aim to improve

the quality of already existing genome assemblies (chicken, Anna's

hummingbird, zebra finch, hooded crow; Korlach et al., 2017; War-

ren et al., 2017; Weissensteiner et al., 2017).

Why are (avian) genome assemblies of varying quality? To date,

no sequencing technology exists that is capable of sequencing entire

avian chromosomes from one end to the other in a single read (Fig-

ure 1a). Instead, short‐read sequencing technologies produce

sequence information (“reads”; usually in “read pairs”) of some hun-

dreds of base pairs (bp), and long‐read sequencing technologies yield

reads of some tens of thousands of bp (Figure 1b; Goodwin,

McPherson, & McCombie, 2016). Similar to a jigsaw puzzle, these

reads are then assembled into contiguous sequences (“contigs”) and
linked contigs (“scaffolds”) (Yandell & Ence, 2012). Scaffolds thus

consist of contigs (all nucleotides determined) and assembly gaps

(placeholders of undetermined “N” nucleotides), the latter usually

containing repetitive elements such as interspersed repeats (trans-

posable elements and endogenous viruses) and tandem repeats (mi-

crosatellites and satellites; Figure 2; Chaisson, Wilson, & Eichler,

2015b; Thomma et al., 2016). Like a puzzle piece occurring multiple

times in a single puzzle game, repetitive elements are problematic

for genome assembly because they contain ambiguous information

about their exact position. If reads or read pairs are shorter than

the repeat unit (an individual transposon or tandem repeat) and

there are multiple identical repeat copies in the genome, this ambi-

guity will interfere with the assembly process and cause a loss of

information (assembly gaps). This issue typically results in assembly

gaps of known size (i.e., approximated by “N” nucleotides) when con-

tigs are bridged into scaffolds by linkage information of read pairs (Fig-

ure 2, left; Chaisson et al., 2015b). On the other hand, repeat‐rich
regions (e.g., clusters of interspersed repeats or large arrays of tandem

repeats) are usually not spanned by reads or read pairs at all and thus

often lead to termination of scaffolds, that is, assembly gaps of

unknown size (Figure 2, right; Chaisson et al., 2015b).

Nearly all currently available avian genome assemblies were gen-

erated using short‐read sequencing (mostly using the Illumina plat-

form; Kapusta & Suh, 2017). Considering that one can expect a

positive correlation between read length and the ability to assemble

individual repeat units or repeat‐rich regions, we hypothesized that

currently published avian genomes based only on short‐read
sequencing contain significant amounts of missing DNA (i.e., the sum

of all DNA hidden in assembly gaps as defined in Figure 2). Although

the “true” genome sizes of birds cannot be determined precisely, at

least as long as read lengths are shorter than individual chromo-

somes, genome sizes of hundreds of bird species have been approxi-

mated through flow cytometry (Gregory, 2017) and we consider

these estimates to be entirely independent of genome assembly

sizes. We therefore quantified the amount of missing DNA and the

numbers of assembly gaps by comparing assembly summary statis-

tics, flow cytometric genome size estimates and haploid chromosome

numbers. While we cannot determine whether these genome size

estimates might be biased by genomic properties (such as a higher

GC or repeat content) because “true” genome sizes are unknown,

we note that the comparison of haploid chromosome numbers vs.

F IGURE 1 Currently available genomics
technologies. (a) Schematic illustration of
the data structure of these technologies
produced from a hypothetical input DNA
molecule. Short reads come in read pairs,
long reads as single reads, linked‐read
clouds (LRC) as short‐read pairs with a
unique barcode (red asterisk) for each
input molecule. Optical maps (OM) contain
physical distances between short sequence
motifs, and Hi‐C maps are short‐read pairs
of 3D genome interactions obtained
through chromatin conformation capture.
(b) Schematic size relations of the data
structure from panel (a). Examples are
scaled by illustrating 1 base pair as 1 mm.
Icons made by Freepik from www.flatic
on.com [Colour figure can be viewed at
wileyonlinelibrary.com]
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the number of scaffolds should provide an additional measure of

genome completeness. From 45 bird species with short‐read genome

assemblies in Zhang et al. (2014), we were able to obtain genome

size and karyotype data for 13 species (Table 1) which span most of

the major groups within Neoaves, Galloanserae and Palaeognathae

(sensu Jarvis et al., 2014; Suh, 2016).

In a “complete” assembly, the number of scaffolds (or ideally,

contigs) should equal the haploid chromosome number. However,

the haploid chromosome number of the sampled birds ranges from

25 to 54 and the number of scaffolds ranges from approximately

21,000 to 346,000 (mean 112,000 ± 91,000; Table 1). Therefore,

there are tens of thousands to hundreds of thousands of gaps

between scaffolds (i.e., of unknown size) in these genome assemblies

(Table 1). Furthermore, there are significant amounts of within‐scaf-
fold gaps, given that the number of undetermined “N” nucleotides

ranges from approximately six to 49 million base pairs (Mb; mean

25 ± 15 Mb; Table 1). We next calculated the total amount of miss-

ing DNA by subtracting the assembly size from the flow cytometric

F IGURE 2 Schematic illustration of
how repetitive elements may cause gaps in
short‐read genome assemblies. (a)
Interspersed elements (IRs; transposable
elements or endogenous viruses, both in
blue) can lead to within‐scaffold gaps of
approximate size (left) or between‐scaffold
gaps of unknown size (right). (b) Tandem
repeats (TRs; microsatellites in red or
satellites in orange) can lead to within‐
scaffold gaps (left; alternatively, a muted
gap, i.e., a sequence contraction) or
between‐scaffold gaps (right) [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 1 Quantification of missing DNA in 13 bird species from Zhang et al. (2014) where cytogenetic, flow cytometric and short‐read
genome assembly data are available

Name
Chromosomes
(n)a

Assembly
scaffoldsb

Expected
size (Gb)a

Assembly
size (Gb)b

Missing
(Mb)c

“N” gaps
(Mb)d

% missing
DNAe

Anas platyrhynchos (Pekin duck) 40 78,487 1.41 1.11 303.27 34.69 24.0

Balearica regulorum (grey‐crowned crane) 40 125,353 1.49 1.14 347.70 5.31 23.7

Calypte anna (Anna's hummingbird) 37 122,597 1.41 1.11 293.70 38.67 23.6

Cariama cristata (red‐legged seriema) 54 139,827 1.47 1.15 321.30 5.69 22.3

Columba livia (pigeon) 40 38,878 1.30 1.11 189.16 20.50 16.1

Corvus brachyrhynchos (American crow) 40 33,296 1.22 1.10 127.33 40.18 13.7

Falco peregrinus (peregine falcon) 25 21,224 1.42 1.17 244.05 18.54 18.5

Haliaeetus leucocephalus (bald eagle) 33 346,419 1.40 1.26 139.75 49.34 13.5

Melopsittacus undulatus (budgerigar) 29 25,212 1.30 1.12 183.38 30.75 16.5

Phoenicopterus ruber (American flamingo) 40 144,901 1.22 1.14 77.75 6.52 6.9

Struthio camelus (ostrich) 40 32,461 2.06 1.23 835.14 40.39 42.4

Tinamus guttatus (white‐throated tinamou) 40 176,848 1.21 1.06 152.58 22.72 14.5

Tyto alba (barn owl) 46 166,074 1.50 1.14 357.53 11.27 24.6

Notes. n: Haploid chromosome number.

Weblinks to sampled genome assemblies are listed in Supporting Information Data S1.
aChromosome number and genome size estimates from Gregory (2017) and Christidis (1990). Genome size estimates were converted from C‐values into

billion basepairs (Gb) assuming 1 pg = 0.978 Gb (Doležel, Bartoš, Voglmayr, & Greilhuber, 2003).
bAssembly metrics from Table S1 of Kapusta and Suh (2017).
cAssembly size subtracted from expected genome size.
dSum of all “N” nucleotides present in the genome assembly.
ePercentage of the expected genome size either missing in the assembly or assembled as “N” nucleotides.

1190 | NEWS AND VIEWS



genome size estimate and adding the number of “N” nucleotides in

the assembly. The estimates range from approximately 7% to 42%

missing DNA (mean 20 ± 9%). Even the lowest estimate is a signifi-

cant proportion considering that analyses based on such genome

assemblies are often referred to as “whole‐genome” or “genome-

wide” analyses. Note that hundreds of gaps are still unresolved in

the human genome (Table 2), which is arguably the best vertebrate

genome assembly available (Chaisson et al., 2015a). Even the well‐
curated reference genomes of important model organisms, such as

Drosophila melanogaster and Arabidopsis thaliana, still contain missing

DNA (Table 2). One may argue that this missing DNA almost entirely

consists of repetitive DNA and is outside the scope or interest of

most (avian) genomics studies. However, simply ignoring assembly

gaps “may lead to false positives and over‐optimistic findings,” as

shown in Domanska, Kanduri, Simovski, and Sandve (2018) where

depletion of mapped reads in gap regions biased the inference of co‐
localization of genomic features. We currently lack a comprehensive

understanding of the functional relevance of repetitive DNA even in

the most‐studied model organisms such as humans (Cordaux & Bat-

zer, 2009; Kellis et al., 2014; Koonin, 2016) and Drosophila (Gallach,

2015; Joshi & Meller, 2017; Zhou et al., 2013); thus, it might be pre-

mature to label these regions as completely irrelevant in birds. Fur-

thermore, short‐read sequencing is known to be biased against highly

GC‐rich sequences, meaning that these will be largely underrepre-

sented in the resulting assembly (Chaisson et al., 2015b). This problem

might be particularly pronounced in birds because their smallest chro-

mosomes (“microchromosomes”) are highly GC‐rich (Burt, 2002). It is

therefore imaginable that many genes and other functionally impor-

tant regions are hidden in the missing DNA due to their repetitiveness

and/or nucleotide composition. To this end, a growing number of stud-

ies suggest that many genes previously declared as “missing” in bird

genomes were in fact just “missed” due to their GC richness (Bornelöv

et al., 2017; Botero‐Castro, Figuet, M‐k, Nabholz, & Galtier, 2017;

Hron, Pajer, Pačes, Bartůněk, & Elleder, 2015). Overcoming the issue

of GC underrepresentation requires long‐read sequencing data (Chais-

son et al., 2015b) or modified protocols for short‐read library prepara-

tion (Tilak, Botero‐Castro, Galtier, & Nabholz, 2018).

To further quantify missing DNA, we next analysed the genome

assemblies of chicken and zebra finch (Table 3), two avian model

systems where considerable efforts combining conventional Sanger

sequencing, bacterial artificial chromosome libraries and cytogenetic

methods were used to build chromosome models (Hillier et al.,

2004; Warren et al., 2010). Thanks to the combination of all these

techniques (including Sanger read lengths longer than those in short‐
read sequencing), these genome assemblies have lower amounts of

missing DNA than the aforementioned short‐read assemblies, but

nevertheless contain tens of thousands of gaps between scaffolds

(Table 3). With the recent release of the first avian genome assem-

blies using the Pacific Biosciences long‐read sequencing platform

(chicken, zebra finch, Anna's hummingbird and hooded crow), the

sequence resolution of GC‐rich and repeat‐rich regions has been

strongly improved (Korlach et al., 2017; Warren et al., 2017; Weis-

sensteiner et al., 2017). Among these four birds with now available

long‐read assemblies (Table 3), the chicken long‐read genome assem-

bly (version galGal5) is the most complete and facilitates a direct

comparison to the previous chicken Sanger genome (version gal-

Gal4). Strikingly, the total amount of missing DNA decreased from

14.1% to 2.4% and the number of “N” nucleotides decreased from

approximately 58 to 12 Mb (Table 3). The total number of scaffolds

is very similar between the galGal5 and galGal4 assemblies (approxi-

mately 23,000), despite the significant increase in assembly contigu-

ity through long‐read sequencing (Kapusta & Suh, 2017; Warren

et al., 2017). It is likely that the high number of galGal5 scaffolds

despite many closed gaps results from the fact that many GC‐rich or

repeat‐rich regions (which were largely inaccessible with previous

technologies) have been successfully sequenced and partially assem-

bled, but remain unplaced on chromosomes (Warren et al., 2017).

This would explain why sequences belonging to the three smallest

chicken microchromosomes (36, 37 and 38) have still not been confi-

dently assigned (Warren et al., 2017).

Does this mean that there are no complete avian genome

assemblies? A truly “complete” assembly should contain each chro-

mosome as a gap‐free sequence from one chromosome end to

another, including entire centromeres and telomeres. For the time

being, this is not feasible for avian genomes. To continue with the

puzzle metaphor, all current sequencing technologies rely on assem-

bling puzzle pieces of DNA into a jigsaw puzzle where the end

result is unknown. Although sequencing technologies are currently

TABLE 2 Quantification of missing DNA in the reference genomes of three model organisms

Name
Chromosomes
(n)a

Assembly
scaffolds

Expected
size (Gb)a

Assembly
size (Gb)

Missing
(Mb)b

“N” gaps
(Mb)c

% missing
DNAd

Arabidopsis thaliana (arabidopsis) [TAIR10] 5 7 0.125 0.12 5.33 0.20 4.4

Drosophila melanogaster (fruit fly) [dm6] 4 1,870 0.17 0.14 30.00 1.10 18.0

Homo sapiens (human) [hg38] 23 594 3.42 3.25 162.00 161.00 10.3

Notes. n: Haploid chromosome number.

Weblinks to sampled genome assemblies are listed in Supporting Information Data S1.
aChromosome number and genome size estimates from Gregory (2017). Genome size estimates were converted from C‐values into billion basepairs

(Gb) assuming 1 pg = 0.978 Gb (Doležel et al., 2003).
bAssembly size subtracted from expected genome size.
cSum of all “N” nucleotides present in the genome assembly.
dPercentage of the expected genome size either missing in the assembly or assembled as “N” nucleotides.
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undergoing massive improvements in read lengths leading to closure

of particularly difficult assembly gaps (Jain et al., 2018a; Kuderna et

al., 2018), some parts of avian genomes will likely remain “un‐
assemblable” (Figure 3) until read lengths of millions of base pairs

can be achieved. Recent technological developments for long‐range
scaffolding, such as linked-read cloud sequencing (Weisenfeld,

Kumar, Shah, Church, & Jaffe, 2017), nanochannel optical mapping

(OM; Lam et al., 2012) and chromosome conformation capture (Hi‐
C; Dudchenko et al., 2017), offer complementary information to

achieve chromosome‐level scaffolds by minimizing the number of

gaps between scaffolds and yield scaffolds spanning the entire

length of individual chromosomes, potentially even for the notori-

ously difficult‐to‐assemble avian microchromosomes (Figure 3). Such

an approach for multiplatform sequencing and assembly was

recently successful in mammalian genomes (Bickhart et al., 2017;

Seo et al., 2016) and is likely achievable for avian genomes (Cooke

et al., 2017; V. Peona & A. Suh, unpublished data; M. H. Weis-

sensteiner, unpublished data).

There is already the chance to get a glimpse into particularly

difficult‐to‐assemble gaps such as centromeres in humans (Jain et

al., 2018b). For avian genomes, Weissensteiner et al. (2017)

recently demonstrated that optical mapping data provide an indirect

means to estimate the size and potential sequence content of

some assembly gaps. They could anchor candidate centromeric tan-

dem repeat arrays with array lengths of over a million base pairs

into the hooded crow genome assembly and illustrate an effect on

genetic diversity and differentiation between populations in adja-

cent genomic regions. This approach was of importance to

TABLE 3 Quantification of missing DNA in four birds where both short‐read (Illumina; except for Sanger in avian models) and long‐read
(PacBio) assemblies are available

Name
Chromosomes
(n)a

Assembly
scaffoldsb

Expected
size (Gb)a

Assembly
size (Gb)b

Missing
(Mb)c

“N” gaps
(Mb)d

% missing
DNAe

Calypte anna (Anna's hummingbird) [Illumina; from Table 1] 37 122,597 1.41 1.11 293.70 38.67 23.6

Calypte anna (Anna's hummingbird) [PacBio contigs] 37 1,076 1.41 1.00 410.00 0.00 29.1

Corvus cornix (hooded crow) [v1, Illumina] 80 1,299 1.19 1.04 152.00 30.64 15.3

Corvus cornix (hooded crow) [v2, PacBio] 80 145 1.19 1.05 144.00 9.55 12.9

Gallus gallus (chicken) [galGal4, Sanger] 39 23,870 1.25 1.11 114.02 57.94 14.1

Gallus gallus (chicken) [galGal5, PacBio] 39 23,474 1.25 1.23 18.31 11.76 2.4

Taeniopygia guttata (zebra finch) [taeGut2, Sanger] 40 35,422f 1.22 1.22 0.88 10.12 0.9

Taeniopygia guttata (zebra finch) [PacBio contigs] 40 1,159 1.22 1.14 81.20 0.00 6.7

n: Haploid chromosome number.

Weblinks to sampled genome assemblies are listed in Supporting Information Data S1.
aChromosome number and genome size estimates from Gregory (2017) and Christidis (1990). Genome size estimates were converted from C‐values into

billion basepairs (Gb) assuming 1 pg = 0.978 Gb (Doležel et al., 2003).
bAssembly metrics from Table S1 of Kapusta and Suh (2017), except for galGal4 (Hillier et al., 2004), hooded crow (Weissensteiner et al., 2017) and

Anna's hummingbird + zebra finch PacBio (present study).
cAssembly size subtracted from expected genome size.
dSum of all “N” nucleotides present in the genome assembly.
ePercentage of the expected genome size either missing in the assembly or assembled as “N” nucleotides.
fAlthough the zebra finch assembly taeGut2 contains 64 chromosome‐level scaffolds, one of these (“chrUn”) is a concatenation of 35,359 unanchored

contigs separated by “N” gaps.

F IGURE 3 A road map for minimizing
the number of assembly gaps using current
technologies. Missing DNA is indicated by
grey bars, interspersed repeats (IRs) are in
blue, and tandem repeats (TRs) are in
orange and red. OM: optical mapping; LRC:
linked-read cloud sequencing; Hi‐C:
chromosome conformation capture [Colour
figure can be viewed at
wileyonlinelibrary.com]
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chromosome 18 containing the previously identified “speciation
island”—a region of particularly high genetic differentiation

between European hooded and carrion crow populations presum-

ably involved in reproductive isolation (Poelstra et al., 2014).

Although chromosome 18 contains multiple assembly gaps, only

the between‐scaffold gap in the middle of the “speciation island” is

large and contains a tandem repeat array which potentially is (part

of) a centromere (Weissensteiner et al., 2017), showcasing the

importance of incorporating information on genome structure into

population genetic studies. While assembly gaps may bias results in

co‐localization analyses of genomic features (Domanska et al.,

2018), fragmented assemblies may also lead to biased results when

assessing the chromosomal landscape of population genetic statis-

tics. For example, stretches of elevated differentiation (“FST peaks”)
are often used to detect genomic regions under selection or to

infer gene flow (Wolf & Ellegren, 2017). However, in an overly

fragmented assembly, consecutive stretches of elevated differentia-

tion may be too short to be detected, or erroneous inferences may

occur if stretches are considered across scaffold boundaries. Thus,

it is likely that both false‐positive and false‐negative discoveries

may occur more frequently in incomplete assemblies.

At last, it is important to keep in mind that birds are on the low

end of repeat content among vertebrates (Sotero‐Caio, Platt, Suh, &
Ray, 2017). Given that difficulty of genome assembly increases with

repeat content (Sedlazeck, Lee, Darby, & Schatz, 2018), our case

study on avian genomes might be a good starting point to illustrate

that even sequencing genomes with relatively low repeat content is

far from trivial and should not be labelled as “complete” yet. While

avian genomes show a repeat density of only 4%–10% with a maxi-

mum of 22% in the downy woodpecker (Zhang et al., 2014), other

vertebrates, invertebrates and plants often reach a repeat density of

more than 50% (e.g., human genome 50%–69%, Cordaux & Batzer,

2009; de Koning, Gu, Castoe, Batzer, & Pollock, 2011; Locusta migra-

toria ~59%, Wu, Twort, Crowhurst, Newcomb, & Buckley, 2017; Frit-

illaria spp. 90%, Ambrozová et al., 2011). This even more increases

the need for caution when interpreting results than illustrated here

for birds.

So, how complete are “complete” avian genome assemblies? For

now, the answer is indeed that substantial parts are usually missing.

However, we are confident that the true extent of genetic variation,

hidden in repeat‐rich and other tricky‐to‐assemble regions, will be

more and more appreciated in the near future, a development

spurred by rapid technological developments. Meanwhile, consider-

ing that not all gaps are equal in size or structure, our recommenda-

tion is this: Mind the gap!
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