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A B S T R A C T

Some human subsistence economies are characterized by extensive daily food sharing networks, which may
buffer the risk of shortfalls and facilitate cooperative production and divisions of labor among households.
Comparative studies of human food sharing can assess the generalizability of this theory across time, space, and
diverse lifeways. Here we test several predictions about daily sharing norms–which presumably reflect realized
cooperative behavior–in a globally representative sample of nonindustrial societies (the Standard Cross-Cultural
Sample), while controlling for multiple sources of autocorrelation among societies using Bayesian multilevel
models. Consistent with a risk-buffering function, we find that sharing is less likely in societies with alternative
means of smoothing production and consumption such as animal husbandry, food storage, and external trade.
Further, food sharing was tightly linked to labor sharing, indicating gains to cooperative production and perhaps
divisions of labor. We found a small phylogenetic signal for food sharing (captured by a supertree of human
populations based on genetic and linguistic data) that was mediated by food storage and social stratification.
Food sharing norms reliably emerge as part of cooperative economies across time and space but are culled by
innovations that facilitate self-reliant production.

1. Introduction

1.1. Background

Phylogenetic perspectives on food sharing (hereafter ‘sharing’)
highlight that human sharing is unique among primates in its frequency
and broad social scope: among hunter-gatherers, sharing often occurs
both within and between households on a daily basis (Gurven, 2004;
Jaeggi & Gurven, 2013a; Winterhalder, 1996a). This unique pattern is
thought to have co-evolved with major derived features of human life
histories such as a prolonged juvenile period, late age of peak pro-
ductivity, and a long post-reproductive lifespan, which depend upon
and facilitate intergenerational food transfers, respectively (Hawkes,
O'Connell, Blurton-Jones, Alvarez, & Charnov, 1998; Hooper, Gurven,
Winking, & Kaplan, 2015; Kaplan, Hill, Lancaster, & Magdalena
Hurtado, 2000). Furthermore, inter-household sharing can be an ef-
fective strategy to minimize the risk of food shortage, especially when
(1) there is high variation in production rates and (2) that variation is
relatively uncorrelated among individuals (Winterhalder, 1986). Thus,
daily sharing supports our slow life history through intergenerational
investment and facilitates exploitation of a risky foraging niche through
reciprocal sharing among independent producers (Jaeggi & Gurven,

2013a). In addition, sharing can also act as a costly signal of phenotypic
quality or cooperative intent (Hawkes, 1991; Smith & Bliege Bird,
2005), potentially resulting in gains in status and associated fitness
benefits (Smith, 2004; von Rueden, Gurven, & Kaplan, 2008; von
Rueden & Jaeggi, 2016). As such, sharing food may result in receiving
other commodities such as sick care (Gurven, Hill, & Hurtado, 2000) or
coalitionary support (Patton, 2005).

Human food sharing is also patterned by a multitude of cultural
norms, which specify how to distribute food, who is expected to share
with whom, etc. (see Gurven, Allen-Arave, Hill, & Hurtado, 2000;
Patton, 2005 for examples). The cultural evolution and enforced
maintenance of norms may be a necessary condition for extensive co-
operation among unrelated individuals as they offer solutions to group
coordination problems (Alvard & Nolin, 2002; Boyd & Richerson,
1994). For instance, Kaplan and Gurven (2005) argue that norms are
necessary for extensive communal food sharing networks because they
help prevent costly disputes, and that sharing norms change in response
to food production and social structure. Thus, we expect cultural norms
(which could also be called ‘institutions’) for daily sharing in societies
where they can solve recurring problems such as the aforementioned
risk of shortfalls or the need to invest in younger families who have yet
to reach peak productivity and/or are burdened by highly dependent
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offspring.
A recent study demonstrated the ubiquity of beyond-household

sharing customs in non-industrial societies and found support for its
association with occasional food-destroying natural hazards (Ember,
Skoggard, Ringen, & Farrer, 2018). However, there is tremendous cross-
cultural variability in the scope of sharing customs; daily sharing among
households was relatively rare (~ ⅓ of societies) and was unrelated to
those hazards. We suspect that this is because daily sharing is only
expected in response to daily fluctuations in food supply. In particular,
we expect daily sharing in societies with a high need to buffer the risk
of shortfalls associated with certain modes of production and no al-
ternative means for doing so, as well as with a socioecology that fa-
cilitates reciprocal cooperation. Below we elaborate our specific pre-
dictions for the evolution of daily sharing (see Table 1).

1.2. Predictions

Foraging, in contrast to other forms of subsistence such as horti-
culture, intensive agriculture, and pastoralism, is characterized by high
variance in daily production (return rates). Hunting returns have par-
ticularly high variance and zero-return rates (Kaplan, 1985; McElreath
& Koster, 2014), and therefore invite reciprocal sharing as a way to
buffer risk. Hunting skill also peaks late in life (Gurven, Kaplan, &
Gutierrez, 2006; Kaplan et al., 2000) necessitating intergenerational
investment, and provides a particularly reliable signal of phenotypic
quality, which can be efficiently broadcast through sharing (Gurven
et al., 2000; Smith & Bliege Bird, 2005). Lastly, hunted foods come in
large packages that may not be economically defensible and thus invite
sharing in the form of tolerated theft (Blurton-Jones, 1984; Hawkes,
1993; Winterhalder, 1996b). For all these reasons, we expect that daily
food sharing norms will be more prevalent among societies that rely
more on hunting for subsistence (Prediction 1).

In contrast, food production in subsistence systems based on animal
husbandry does not vary on a daily basis and may be more predictable
than foraging. Future food supply is embodied in animals (hence the
name ‘livestock’), smoothing production and consumption. Moreover,
variance in livestock production is more related to inherited wealth and
property than the stochastic, skill-intensive prey-encounters of hun-
ting–thus reducing the utility of sharing. While subsistence economies
oriented around livestock may benefit from seasonal sharing to increase
diet breadth or buffer against unpredictable animal loss (Aktipis, Cronk,
& de Aguiar, 2011; Richerson, Mulder, & Vila, 1996), daily sharing
between households is not expected (Prediction 2).

Sharing is facilitated by stochastic overproduction (e.g., large game)
wherein some food would go to waste if the producer did not share.
Reciprocal sharing during periods of energetic surplus thus reduces risk
at a relatively low cost to the sharer (Cashdan, 1985; Winterhalder,
1996a). However, if the surplus food can be stored and accumulated,
then consumption is smoothed, and the producer need not risk defec-
tion by their sharing partner; in effect, one can share with one's future
self. Therefore, we predict that daily sharing will be less likely in the
presence of food storage technology (Prediction 3).

Finally, some extrinsic environmental factors (e.g., climate) can

increase variability in food production and increase the risk of shortage.
Thus, we include measures of predictability for precipitation, tem-
perature, and net primary productivity as proxies of unpredictability in
subsistence. Assuming that environmental predictability affects the
predictability of food production, we expect that daily sharing customs
will be more likely in less predictable environments (Prediction 4).

In addition to the dynamics of food production, the payoff for
sharing may be impacted by social structure, reciprocal exchange of
other commodities within the community, and the opportunity for ex-
ternal market exchange. For instance, societies with extensive co-
operation in other domains provide the opportunity for trade (e.g., food
for sick care, coalitionary support, or labor), and thus generalize the
value of sharing. We expect that societies with daily labor sharing
norms (the only other available measure of daily cooperation cross-
culturally) will be more likely to also have a daily food sharing norm
(Prediction 5).

Conversely, participation in external markets may disincentivize
sharing by providing alternative means of smoothing consumption
without the risk of cheating associated with reciprocity (see Kranton,
1996 for a theoretical model; for empirical examples see Behrens, 1992;
Ensminger, 1996; Franzen & Eaves, 2007). We expect that the presence
of external trade of food will decrease the likelihood of sharing (Pre-
diction 6). However, see Gurven, Jaeggi, von Rueden, Hooper, and
Kaplan (2015) for evidence that market integration need not displace
reciprocal exchange.

As the number of group members increases, cooperation based on
reciprocity is threatened by heightened risk of free-riding and reduced
ability to assess the behavior of partners (Boyd & Richerson, 1988;
Kaplan & Gurven, 2005). While we do not have direct measures of the
size of sharing networks, we use the mean size of local community as a
proxy and expect that smaller communities will be more likely to have
daily food sharing norms than larger communities (Prediction 7)—in-
sofar as community size is an effective proxy of the size of sharing
networks. But note that while reciprocity breaks down in large groups,
cooperation based on enforced norms does not (Fehr, Fischbacher, &
Gächter, 2002), and thus the strength of this effect should be roughly
inverse to the extent that sharing norms are enforced and free-riders
punished–data that we lack.

Social stratification could reduce daily sharing as surpluses are
skimmed off by elites, perhaps in return for other services such as
protection (Hooper, Kaplan, & Boone, 2010). Similarly, reciprocity is
less common among more hierarchical primate groups as commodities
flow up the hierarchy (Barrett, Henzi, Weingrill, Lycett, & Hill, 1999;
Jaeggi, Stevens, & Van Schaik, 2010). Thus, we expect that sharing will
be less likely in stratified societies than egalitarian societies (Prediction
8). Notably, elites may also skim surplus for purposes of later redis-
tribution, a form of ‘managerial mutualism’ (Smith & Choi, 2007) that
could also buffer risk and smooth consumption. However, in this study
we focus on inter-household sharing rather than hierarchical redis-
tribution, which is unlikely to be coded as daily sharing given our de-
finitions (see 2.1.).

Table 1
Study predictions.

Prediction Direction Rationale

1. Hunting + Stochastic production; late age of peak production.
2. Animal Husbandry – No daily variance in production; smoothing consumption via ‘live-stock.’
3. Food Storage – Smoothing consumption via accumulated surplus.
4. Unpredictable Ecology + Unpredictable environments ≈ unpredictable production; need for risk-buffering.
5. Labor Sharing + Generalized sharing across currencies; cooperative socioecology.
6. External Trade − Smoothing consumption via market goods.
7. Community Size − Risk of free-riding in larger groups.
8. Social Stratification − Skimming of surplus by elites; taxation and redistribution.
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1.3. The comparative method

This study uses the comparative method to test adaptive hypotheses
about cross-cultural variation in sharing norms and, like all compara-
tive studies, is subject to a breadth-depth trade off. The advantage of
this breadth (a diverse array of non-industrial societies from around the
world) is that we can test for the convergent evolution (independent
emergence) of cultural norms as general solutions to adaptive problems
across time and space (Mace & Pagel, 1994; Nunn, 2011). Worldwide
cross-cultural studies can also be construed as testing hypotheses about
species-typical reaction norms, or ‘context-dependent human uni-
versals’ (Chapais, 2014; Jaeggi, Boose, White, & Gurven, 2016). From
either perspective, comparative studies can offer stronger evidence for
the adaptive value of a norm than case-studies of single cultures.

The disadvantages of this method include, in practice if not ne-
cessarily in principle, noisy estimation of data, reliance on proxies ra-
ther than the actual phenomena of interest, and loss of within-culture
variance. The latter predisposes findings from comparative studies to
the ecological fallacy/Simpson's paradox: correlations at the level of
groups need not reflect individual-level processes (Lawson et al., 2015;
Pollet, Tybur, Frankenhuis, & Rickard, 2014; Ross & Winterhalder,
2016). This problem is attenuated when studying group-level phe-
nomena (here: sharing norms), but nonetheless we caution that drivers
of sharing norms might not always drive variation in sharing behavior
among individuals. While comparative studies can avoid these limita-
tions by incorporating individual-level data and testing hypotheses at
multiple levels of aggregation (e.g., Ross & Winterhalder, 2016), we
lack individual-level sharing data from our sample societies.

Valid inference about convergent evolution relies on observations
being statistically independent. Yet, just as there are no independent
species, there are no truly independent societies–all populations have
some shared history that may affect their current trait values. Failure to
take historical relatedness into account can greatly increase false-po-
sitive risk, a problem that is well known to evolutionary biologists and
routinely controlled for by explicitly modelling the covariance among
observations due to phylogeny (Harvey & Pagel, 1991). The history of
worldwide cross-cultural research pre-dates the use of phylogenetic
regression models, but the non-independence among human societies
(‘Galton's problem’) has been a concern since the inception of the
comparative method in anthropology (Tylor, 1889). To overcome this
problem in the absence of phylogenetic information, comparative an-
thropologists have often relied on samples such as the Standard Cross
Cultural Sample (SCCS) (Murdock & White, 1969) (of which our dataset
is a subset), which attempt to minimize the historical relatedness of
sampled societies in hope that societies were sufficiently distant so as to
be effectively independent. However, there is accumulating evidence of
autocorrelation even in samples such as the SCCS (Dow & Eff, 2008;
Minocher, Duda, & Jaeggi, 2019).

To address the problem of non-independence, we utilized a recently
published phylogenetic ‘supertree’ (i.e., a tree of trees) of human po-
pulations based on genetic and linguistic data (Duda & Zrzavý, 2016,
2019). While many previous cross-cultural studies have employed
phylogenetic methods (Mace & Holden, 2005; Mace & Pagel, 1994;
Nunn, 2011), a reliable global phylogeny has been lacking. By using
this phylogeny, we can not only control for non-independence, but also
considerably broaden the sample and leverage the entire breadth of the
ethnographic record, thus maximizing the power of the phylogenetic
approach to detect convergent evolution.

In addition to phylogeny, we control for non-independence due to
the time at which the ethnographic data were collected (the ‘ethno-
graphic present’, median= 1935, range=1634–1965), which may
capture temporal fluctuations in ethnographers' biases or foci that could
affect the likelihood of recording sharing practices. While we initially
planned to model the effect of geographic location in addition to phy-
logeny and ethnographic present, we found that phylogenetic distance
and geographic distance were highly correlated (median ρ=0.88, 90%

HPDI= [0.79,0.99]) creating problems of interpretation and model-
fitting. Thus, we excluded geographic location and note that population
history cannot be easily disentangled from spatial proximity (Manica,
Prugnolle, & Balloux, 2005; Sokal, 1988); both may capture diverse
processes generating similarity such as vertical transmission of genes or
culture, horizontal transmission (diffusion), niche conservatism or
shared ecology. We present results from a model controlling for phy-
logeny in the main text, and provide results when substituting geo-
graphic distance for phylogeny in the supplemental material.

2. Materials and methods

2.1. Data description

Our outcome variable (daily food sharing) and the daily labor
sharing predictor come from Ember et al. (2018). In that study, these
variables were coded from ethnographic data based on the following
criteria:

“Does the typical household share food[labor] with other households or
economic units outside the household on a daily or almost daily basis?”
1=Yes, 0=No.

Where ‘sharing’ is defined as “the noncoerced giving of aid from one
or more household members to one or more individuals within other
households.” Sharing norms were coded based on ‘typical’ households,
not elites/leaders. This distinction rules out vertical transfers from
commoners to elites—or vice-versa, e.g., wealthy Orma pastoralists
who gave their surplus milk to the poor (Ensminger, 1996). Coders used
eHRAF World Cultures (HRAF, n.d.) and the Human Relations Area
Files' paper collection to find relevant ethnographic materials. See
Ember et al. (2018) for additional details of the coding procedure.

We describe all study variables in Table 2. A few of our predictors
(food storage, external trade, and social stratification) were dichot-
omized from their original ordinal scales because we did not believe
that their ordinal levels were theoretically relevant for our study. For
those variables, we reasoned that dichotomous comparisons (present/
absent) were more sensible (but see Section 3.2 for robustness checks).

Before conducting our analyses, we checked for multicollinearity
among predictors using the generalized variance inflation factor
(GVIF). All GVIF values fell below the commonly used threshold of 10,
indicating that our models should not suffer from multicollinearity.
While some authors recommend thresholds as low as 3 (Zuur, Ieno, &
Elphick, 2010), even a GVIF higher than 10 need not imply serious
issues or demand that a predictor be dropped (O'Brien, 2007). Our use
of regularizing priors (see Analysis for details) should also reduce var-
iance inflation, as is the case for shrinkage techniques such as ridge
regression (Dorrmann et al., 2013).

2.2. Analysis

2.2.1. Statistical framework
We fit our models and present results in a Bayesian framework

(Gelman et al., 2013) where, rather than reporting point estimates and
p-values, we emphasize effect sizes (Cohen's d on the logit scale), the
posterior probability that the effect is in the expected direction, and
visualization of model predictions. Posterior predictive plots help the
reader understand the impact of a predictor on the probability scale
(i.e., the probability of daily sharing as a function of our predictors),
whereas Cohen's d on the latent (logit) scale offers a standardized
magnitude that can easily be compared to other model parameters and
effect sizes from other studies. Unlike the probability scale, latent scale
effect sizes are also invariant to the choice of reference category (i.e.,
the effect size is independent of the intercept). The posterior probability
(‘PP’) is calculated as the proportion of the posterior probability dis-
tribution that falls on the expected side of 0, which directly expresses
our model's confidence in a given association.
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2.2.2. Model definition
We model sharing using logistic multilevel regression models, uti-

lizing regularizing priors to impose conservatism on parameter esti-
mates. Phylogenetic distance and similarity in the ethnographic present
are captured by pairwise distance matrices, which can be modeled as
continuous random effects using Gaussian Process regression
(McElreath, 2016; Rasmussen & Williams, 2006). This approach le-
verages the standard multilevel strategy of pooling variance and reg-
ularizing hyper-parameters, while expanding upon the more commonly
used discrete random effects (like individual, group, or location ID) for
which the distance, and thus expected covariance, between categories is
unknown. The full model, including random effects for phylogeny and
ethnographic present, was defined as:

pDaily Sharing~Bernoulli( )

= + + + + +

+ + +

+ + +

+

p β β β β

β β β

β β β

β

logit( ) γ γ Hunting Food Store Strat

External Trade Animal Hus Precip Pred

Temp Pred NPP Pred Labor Sharing

Comm Size

0 Phylogeny EP 1 2 3

4 5 6

7 8 9

10

…

−

β
γ K
K η ρD
η
ρ

~Normal(0, 2)
~MVNormal(0 N Societies, )

~ exp( )
~Exponential(0.5)
~Exponential(0.5).

ij ij

Sharing is modeled as a Bernoulli distribution where the probability
of sharing is a logit-linear function of main effects β and random effects
γ. The number of random effects for phylogeny and ethnographic pre-
sent is equal to the number of societies, and the variance of these
random effects is pooled according to the Gaussian Process covariance
function K. K states that the maximum covariance between any two
societies η declines exponentially at rate ρ as the distance (patristic/
temporal) between societies grows. This covariance function is akin to
an Ornstein-Uhlenbeck (OU) model of evolution (see Fig. 2). We prefer
these functions over the more commonly employed Brownian Motion
(BM) models because BM assumes that variance is proportional to time,
and thus phenotypic variance would become infinitely large as time
approaches infinity. OU models simply add ‘friction’ to the random
walk process of BM models, which can reflect realistic phenotypic
constraints. OU models of evolution have also performed well in em-
pirical studies when compared to alternative models of phenotypic
change (Butler & King, 2004; Gartner et al., 2009). See Nunn (2011) for
discussion of different models of evolutionary change in the context of

Table 2
Description of study variables.

Name Original Source Original Scale Transformation

Hunting (Murdock & Morrow, 1970) Ordinal scale from 0 to 100%
dependence, with deciles as cutpoints.

Centered and standardized by 2 SD

Animal Husbandry (Murdock & Morrow, 1970) Ordinal scale from 0 to 100%
dependence, with deciles as cutpoints.

Centered and standardized by 2 SD

External Trade (Murdock & Morrow, 1970) 1=No Trade Dichotomized into present (5–6 on original scale) or
minimal/absent (1–4 on original scale).2= Food Imports absent although trade

present
3= Salt or Minerals only
4≤ 10% of food (90% from local
extractive sources)
5≤ 50% of food, and less than any
single local source
6≥ 50% of food

Food Storage (Murdock & Morrow, 1970) 1=None Dichotomized into food storage present (2–4 on
original scale) or food storage absent (1 on original
scale).

2= Individual Households
3=Communal Facilities
4= Political agent controlled
repositories
5= Economic agent controlled
repositories

Social Stratification (Murdock & Provost, 1973) 1=Egalitarian Dichotomized into egalitarian (1 on the original scale)
and stratified (2–5 on the original scale).2=Hereditary Slavery

3= 2 social classes, no castes/slavery
4= 2 social classes, castes/slavery
5= 3 social classes or castes, with or
without slavery

Community Size (mean size of local
community)

(Gray, 1999) 1= Fewer than 50 Centered and standardized by 2 SD
2=50–99
3=100–199
4=200–399
5=400–1000
6=1000 without any town of > 5000
7=One or more towns of 5000–50,000
8=One or more cities of > 50,000

Precipitation Predictability Kirby et al., 2016), based upon
Colwell's (1974) information theoretic
index.

Continuous measure between 0 and 1 Centered and standardized by 2 SD

Temperature Predictability Kirby et al., 2016), based upon
Colwell's (1974) information theoretic
index.

Continuous measure between 0 and 1 Centered and standardized by 2 SD

Net Primary Productivity (NPP)
Predictability

Kirby et al., 2016), based upon
Colwell's (1974) information theoretic
index.

Continuous measure between 0 and 1 Centered and standardized by 2 SD
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the comparative method and McElreath (2016) for a practical in-
troduction to Gaussian Process covariance functions.

Priors for the Gaussian Process function are modeled as coming
from the exponential distribution with rate parameter= 0.5. It is ea-
siest to understand these priors in terms of the covariance function
parameterized by η and ρ. The function is regularized in the sense that
small values for the maximum covariance are more likely than large
values, and covariance is more likely to decline rapidly with distance
than slowly. Distance values were standardized by their respective
maxima so that all values fell in the interval [0,1]. See Supplement A for
visualization of the posterior covariance functions for phylogeny and
ethnographic present.

Priors for main effects are modeled as a normal distribution cen-
tered on 0 and with a standard deviation of 2. On the logit scale, these
are weakly-regularizing priors, in that the probability mass is highest
for small values, and little probability is afforded to very large values.
Using such priors greatly reduces both Type-S (inferring the wrong sign
for an effect) and Type-M error (inferring that an effect is of greater
magnitude than it is) (Gelman & Carlin, 2014; Gelman & Tuerlinckx,
2000). The use of regularizing priors is analogous to ‘penalized like-
lihood’ approaches in non-Bayesian frameworks (Green, 1998).

2.2.3. Missing data
For some predictors, the number of observations was less than the

number of observed outcomes. Rather than performing complete-case
analysis, i.e. excluding all societies with missing values, which im-
plicitly assumes that data are missing at random, we utilized Bayesian
imputation for the missing values (which also assumes missing at
random). Bayesian imputation replaces the missing values with a
parameter (or, in the case of discrete missing values, marginalizes over
the possible outcomes), which propagates uncertainty in parameter
estimation and allows us to use the full dataset. We use all other ob-
served variables, including the outcome, to predict missing ob-
servations–an approach that minimizes bias in imputation and para-
meter estimates (Bartlett, Frost, & Carpenter, 2011; Collins, Schafer, &
Kam, 2001). Our imputation procedure thus makes better use of the
valuable ethnographic record and imposes no additional assumptions
on missingness than would be implied by a complete-case analysis.

2.2.4. Model comparison and Bayesian R2

To evaluate whether including phylogeny and ethnographic present
improved model performance, we fit three nested submodels of the
model defined in section 2.2.2. These models were (i) main effects and
phylogeny, (ii) main effects and EP, and (iii) main effects only. Using
the Watanabe-Akaike Information Criterion (WAIC), we calculated
model weights—the probability that a given model will perform best on
new data, relative to other candidate models (McElreath, 2016).

Additionally, recent extensions of the coefficient of determination
R2 or ‘variance explained’ generalize the familiar statistic to non-
Gaussian distributions (Gelman, Goodrich, Gabry, & Ali, 2017;
Nakagawa, Johnson, & Schielzeth, 2017) and allow us to partition the
proportion of variance captured by our main theoretical variables (fixed
effects) and the variance captured by phylogeny and ethnographic
present (EP). We use these statistics to evaluate the relative importance
of each in explaining sharing variation in our sample. We also examined
whether phylogenetic (or temporal) signal was mediated by other
predictors, fitting a model with phylogeny and EP but no fixed effects.

2.2.5. Exploratory analyses
While we designed our models to provide the clearest tests of our

hypotheses (conditional on the constraints of our data), some of our
analytic decisions were subject to ‘researcher degrees of freedom,’
(Simmons, Nelson, & Simonsohn, 2011) in the sense that reasonable
alternative analytic decisions could have been made that could plau-
sibly affect our inferences. These decisions include our choice of phy-
logenetic tree, the decision to use phylogenetic distance rather than

geographic distance, and the way that we transformed a few of our
predictors. To check the robustness of our results, we conducted ex-
tensive exploratory analyses varying each of these decision points,
holding everything else in the analysis constant. We also ran (i) a bi-
variate model where hunting was the only predictor and (ii) substituted
dependence on hunting for dependence on foraging more broadly
(hunting, gathering, and fishing) as alternative tests of Prediction 1.
Finally, to test whether our measures of environmental predictability
map on to the predictability of actual subsistence (which is what should
predict sharing), we utilized data from a new cross-cultural study of
foraging returns (Koster et al., 2019). Specifically, we explored the
association between hunting success (i.e., a non-zero return) and en-
vironmental predictability.

2.2.6. Model fitting
All analyses were run in R 3.4.4 (R Core Team, 2017) and all models

were fit using the RStan package (Stan Development Team, 2018),
which fits Bayesian models using Hamiltonian Markov Chain Monte
Carlo. Markov chain convergence was assessed using standard diag-
nostics (number of effective samples, the Gelman-Rubin diagnostic, and
visual inspection of trace plots). Data and code for reproducing this
analysis and all figures are available at https://github.com/erik-ringen/
phylo-foodsharing.

3. Results

3.1. Main results

Prediction 1 was not supported as dependence on hunting was not
associated with sharing (median d=−0.21, PP=0.34; see Fig. 3).
Thus, our main proxy for various proposed functions of sharing (risk-
buffering, kin investment, costly signaling) failed to predict sharing.
Other aspects of subsistence were consistent with our predictions: so-
cieties with external trade of food (d=−0.68, PP= 0.90), and de-
pendence on animal husbandry (d=−1.08, PP=0.99) were less
likely to have a daily sharing norm, indicating that alternative means of
smoothing consumption decreased sharing. Labor sharing (d=1.14,
PP > 0.99) and absence of food storage (d=−1.06, PP= 0.98) were
also strong predictors of food sharing. Sharing may be less likely in
societies with large community sizes (d=−0.36, PP=0.72) and so-
cial stratification (d=−0.28, PP=0.72), which are potential ob-
stacles to reciprocal cooperation, though there was high uncertainty in
those estimates. Our reference categories were egalitarian, without food
storage, external trade, or labor sharing, and with all continuous pre-
dictors set to their mean values; a society with these traits had a 0.50
probability of sharing. Adding food storage, external trade, and social
stratification jointly decreased the probability to 0.02, while adding
labor sharing raised it to 0.88 (see Fig. 3 for uncertainty in estimates).
(See Fig. 4.)

Contrary to our expectations, all three measures of environmental
predictability were positively associated with sharing, albeit with
varying degrees of certainty (d=0.24, 0.71, and 1.3 for precipitation,
temperature, and NPP predictability, respectively; PP= 0.32, 0.11,
0.01). Thus, sharing was more likely in predictable environments.

In the absence of any fixed effects, phylogeny accounted for a
moderate amount of variance (median=0.14, 90% HPDI= [0,0.52]),
but EP did not (median= 0.02, 90% HPDI= [0,0.11]). After adding
fixed effects, the phylogenetic signal was reduced to 0.03 [0,0.12]. The
majority of variance was captured by the fixed effects (median=0.57,
90% HPDI= [0.32,0.69]). Food storage and social stratification were
likely mediators of the effect of phylogeny on sharing, because those
variables also showed phylogenetic signal and had direct effects on
sharing (see Supplement G for details) (See Fig. 4).

Model comparison using the Watanabe-Akaike Information
Criterion (WAIC) suggested that including phylogeny and EP offered
little improvement in predictive power (Table 3). ‘Fixed Effects’ had the
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lowest WAIC/highest weight, followed closely by ‘Fixed Effects + EP’.
None of the models clearly outperformed the others. Combined with the
small conditional R2 for both phylogeny and EP, this suggested that
there is not much residual afreedomutocorrelation in our sample, at
least not due to population history and time.

3.2. Exploratory results

We found that our main results are robust to (i) the use of an al-
ternative phylogeny based on lexical data (Jäger, 2018), (ii) sub-
stituting phylogenetic distance for geographic distance, and (iii)
treating social stratification and external trade as continuous predictors
and log-transforming community size. We did not explore the effect of
treating food storage as continuous because the higher levels of the
variable (e.g., ‘Political agent controlled repositories’ vs ‘Economic
agent controlled repositories’) were not theoretically relevant for our
study. See Supplement sections B-D for details (Fig. 1).

Replacing hunting with foraging more broadly (i.e., hunting, gath-
ering, or fishing) did not substantially change our results (median
d=−0.16, PP=0.40). However, in a bivariate model where hunting
was the only main effect, we found that hunting was positively asso-
ciated with sharing (median d= 0.58, PP= 0.96). See Supplement E
for details.

While environmental predictability was positively associated with
food sharing, our analysis of foraging return data from 40 foraging
societies (Koster et al., 2019) offered contradictory results. Precipita-
tion predictability was positively associated with hunting success rate,
consistent with our predictions, (median d= 1.14, PP=0.98). Tem-
perature predictability was negatively associated (d=−1.09,
PP=0.11), and NPP predictability was unassociated with hunting

success (d=−0.28, PP=0.37). Methodological differences in the way
that zero-returns were recorded across societies limits our confidence in
these findings, but, at a minimum, this suggests that our measures of
environmental predictability may be poor proxies for the predictability
of actual subsistence. See Supplement F for details.

4. Discussion

Food sharing is a perennial topic in the study of evolution and
human behavior, but it is still important to interrogate the general-
izability of theory beyond formal models and case studies. Our study
leveraged the ethnographic record to test how sharing norms are af-
fected by subsistence and socioecology in 73 nonindustrial societies.
Our findings generally support risk-buffering hypotheses: sharing was
most likely when individuals cannot store food, engage in external
markets, or retain surplus in the form of livestock. A positive associa-
tion between labor and food sharing suggests the possibility of ex-
change between multiple currencies in cooperative socioecologies (e.g.,
Hames, 1987; Jaeggi, Hooper, Beheim, Kaplan, & Gurven, 2016). Thus,
(daily) sharing norms emerge as part of cooperative economies across
time and space but are culled by innovations that facilitate self-reliant
production and by social structures that hinder reciprocity (e.g., large
community sizes, social stratification, and external trade). These find-
ings are largely consistent with formal models of sharing and case-
studies in small-scale subsistence economies (Gurven, 2004; Hooper
et al., 2015; Kaplan et al., 1985; Winterhalder, 1986), and support the
generalizability of their predictions.

Surprisingly, sharing was not associated with hunting once other
predictors were included, even though reliance on hunting should
capture not only the need for risk-buffering but also investment in
younger kin, opportunities for costly signaling, and low economic de-
fensibility. This finding is somewhat difficult to interpret as few if any
societies rely to a large degree on hunting and have the traits here
found to reduce sharing (food storage, animal husbandry, etc.), hence
this counterfactual might not be meaningfully estimated. If real, this
finding would imply that the production of foods with sharing-prone
features (high yield/high variance, late age of peak production, high
levels of skill required, low economic defensibility) in and of itself does
not necessarily lead to daily sharing between households in the pre-
sence of food storage, animal husbandry, etc., and that the bivariate
effect of hunting may be capturing the absence of these traits rather
than a direct effect of hunting on sharing (in Supplement E we explore
the bivariate relationships between hunting and all other predictors).
However, the essence of resource production with high yield/high
variance does spontaneously lead to reciprocal sharing in virtual

Table 3
Model comparison using WAIC.

Model WAIC ΔWAIC pWAIC Weight

Fixed Effects 72.5 0 10.5 0.33
Fixed Effects + EP 72.6 0.1 11.5 0.32
Fixed Effects + Phylogeny + EP 73.6 1.1 13.3 0.19
Fixed Effects + Phylogeny 74 1.5 12.5 0.15

Watanabe-Akaike Information Criterion (WAIC) values for models that include
phylogenetic and ethnographic present (EP) random effects, phylogenetic
random effects, EP random effects, or only fixed effects (no control for phylo-
geny/EP). ΔWAIC is the difference between a given model and the model with
the lowest WAIC. pWAIC is the effective number of parameters in each model.
WAIC weights are the probabilities that a given model will perform best with
new data, relative to the other candidate models (McElreath, 2016).

Fig. 1. Sample societies and distribution of daily sharing.
Global distribution of daily food sharing norms in our sample (N=73 societies). Black dots indicate presence (19/73 societies), red dots indicate absence.
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foraging experiments (Kaplan, Schniter, Smith, & Wilson, 2012; Kaplan,
Schniter, Smith, & Wilson, 2018), and hunted game typically does come
in large packages that are not economically defensible (Blurton-Jones,
1984; Hawkes, 1993; Winterhalder, 1996b), which makes sharing in-
evitable (at least in the absence of strong property rights). Thus, the
overall weight of theory, ethnography, and experiments still strongly
predicts that a greater reliance on hunting, or other risky foods, should
increase sharing.

Contrary to Prediction 4, we found that environmental predict-
ability was positively associated with sharing. This reversal of ex-
pectations is puzzling, but these measures may be poor proxies of the

predictability of actual food production, which is the construct we
sought to measure. To illustrate this point, variance in food availability
need not imply variance in actual food intake among highly-en-
cephalized species. For instance, large-brained catarrhines have con-
sistent food consumption even in variable environments (‘cognitive
buffering’) (van Woerden, Willems, van Schaik, & Isler, 2012). These
predictability measures also likely capture a large amount of un-
measured ecological variation, confounding interpretation. While more
precise measures of subsistence predictability could be derived from
quantitative data (e.g., zero-return rates, inter-household variance in
production), most ethnographic sources are insufficient to estimate

Fig. 2. Correspondence between GP Covariance
Function and OU Model of Evolution.
A: Simulated Gaussian Process (GP) covariance
functions, as described in our model definition.
Darker lines denote larger values of ρ, where the
covariance between societies declines rapidly with
phylogenetic/temporal distance. The dashed diag-
onal line represents a linear covariance function,
which is assumed by Brownian Motion (BM) models
of trait evolution. B: Simulated evolution of a trait
following an Ornstein-Uhlenbeck model of evolution,
which is the implicit process model of our covariance
function. Darker lines denote larger values of α
(which is analogous to ρ in the GP covariance func-
tion), where the trait does not drift as far away from
the optimal trait value θ. Wt denotes the BM process
of drift. For both sets of simulations, we set the
variance/drift parameters (η and σ, respectively)
equal to 1.

Fig. 3. Predictors of sharing.
A: Posterior distribution of effect sizes on the logit scale, sorted by the absolute value of the effect size. Percentages indicate the proportion of the posterior that was in
the predicted direction. Effect sizes were converted from the logit scale to Cohen's d following Borenstein, Hedges, Higgins, and Rothstein (2011). Effect sizes for
binary predictors represent presence/absence and effect sizes for continuous predictors represent a+2 standard deviation increase to facilitate comparison between
discrete and continuous effect sizes (Gelman, 2008). A small number of posterior samples from the extreme tails were suppressed to enhance visualization. B:
Posterior-predictive plots on the probability scale. Shaded intervals of increasing opacity represent quantiles of the 90% credible interval, with darker shades
reflecting the relative increase in probability mass. ‘Z-score’ axes indicate standard deviations. Our reference categories were: egalitarian, without food storage,
external trade, or labor sharing, and with all continuous predictors set to their mean values.
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these rates. In our exploratory analysis of foraging returns in 40 so-
cieties (Koster et al., 2019), we found that the associations between
hunting success rates and environmental predictability were incon-
sistent with our food sharing results, casting doubt on the usefulness of
those measures as proxies of subsistence predictability (Supplement F).
Previous cross-cultural studies have found subtle interactions between
environmental predictability and other ecological variables (Botero
et al., 2014), but we abstained from further analyses in the absence of
clear theoretical predictions.

It is important to note that our findings are not inconsistent with
some other evolutionary theories of food sharing. Some of our findings,
such as the negative association between animal husbandry and
sharing, could also be driven by the stability of group structure. When
group membership is unstable (as is the case for some pastoralists),
reciprocal sharing can break down due to ephemeral interactions and
an inability to punish free-riders (Smith et al., 2016). Thus, while our
results are congruent with risk-buffering theories, they do not rule out
competing or complementary explanations of sharing. Data on intra-
societal variation or changes in socioecology over time would be par-
ticularly useful in parsing out the importance of factors such as group
stability.

The limited role of phylogeny suggests that sharing norms adapt
rapidly to local socioecologies. This finding contrasts with marriage
norms, which show a strong phylogenetic signal in the SCCS (Minocher
et al., 2019), but is congruent with a meta-analysis of food sharing
which found virtually no phylogenetic signal for reciprocal sharing
(Jaeggi & Gurven, 2013b), as well as with case studies where sharing
norms change rapidly depending on socioecological context (e.g., Ache
in forest vs reservation (Gurven, Hill, & Kaplan, 2002);!Kung vs //Gana
Bushmen [Cashdan, 1980]). That said, the relationship between evo-
lutionary rate and phylogenetic signal is not linear. We also reiterate
that it is difficult to disentangle population history from geographic
proximity—which means that ‘phylogeny’ might also capture hor-
izontal transmission/diffusion and unmeasured environmental simi-
larity. Indeed, our findings were qualitatively the same when sub-
stituting phylogenetic distance for geographic distance.

We emphasize two major methodological limitations in this study:
cross-sectional data and Simpson's paradox. With diachronic data, we

could infer how sharing norms change within societies over time and
gain insights into the actual process of cultural change. The danger of
Simpson's paradox (an ecological fallacy) comes from conflating group-
level patterns with individual processes. While sharing norms are rea-
sonably construed as group-level phenomena, some of our predictions
come from a behavioral ecology literature focused on the strategic
sharing behavior of individuals. Our inferences cannot be safely ex-
tended to individual behavior nor individual endorsement of cultural
norms. A productive future direction would be to explore the cross-
cultural congruence between group-level sharing norms and individual
endorsement of or adherence to the norms. Despite these limitations,
consistent cross-cultural correlations offer strong evidence for adaptive
hypotheses, and thus our results can guide future studies of human
cooperation by highlighting some principal drivers of variation in
sharing.
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