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Summary

Complex adaptive polymorphisms are common in nature,
but what mechanisms maintain the underlying favorable

allelic combinations [1–4]? The convergent evolution of
polymorphic social organization in two independent ant

species provides a great opportunity to investigate how
genomes evolved under parallel selection. Here, we demon-

strate that a large, nonrecombining ‘‘social chromosome’’
is associated with social organization in the Alpine silver

ant, Formica selysi. This social chromosome shares archi-
tectural characteristics with that of the fire ant Solenopsis

invicta [2], but the two show no detectable similarity
in gene content. The discovery of convergence at two

levels—the phenotype and the genetic architecture associ-
ated with alternative social forms—points at general genetic

mechanisms underlying transitions in social organization.
More broadly, our findings are consistent with recent theo-

retical studies suggesting that suppression of recombi-
nation plays a key role in facilitating coordinated shifts in

coadapted traits [5, 6].
Results and Discussion

The convergent evolution of similar traits in distantly related
species demonstrates the power of natural selection [7].
But when complex sets of behavioral and morphological
traits arise repeatedly, are they controlled by similar genetic
mechanisms? Comparing the genetic architecture underlying
convergent adaptations can lead to key insights into how
genomic evolution shapes phenotypic innovations.

Many ant species exhibit strikingly convergent behavioral
syndromes depending upon the number of queens repro-
ducing in the colony. In general, colonies with multiple
queens (polygynous) produce smaller queens and workers
than colonies with a single queen (monogynous), and the
two forms differ in key behavioral traits such as tolerance
of conspecifics and mode of dispersal [8, 9]. A recent study
in the fire ant Solenopsis invicta identified a large, non-
recombining ‘‘social chromosome’’ that is associated with
alternative social organizations in that species [2]. Here, we
investigated the genomic architecture underlying social
organization in the Alpine silver ant, Formica selysi, which
is polymorphic in queen number and exhibits a similar suite
of behavioral and morphological traits associated with each
form.
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Populations of F. selysi contain a mix of monogynous and
polygynous colonies [10, 11], with rare oligogynous colonies
headed by two closely related queens (see Table S1 available
online; [12]). In our study population in the Swiss Alps, we have
monitored the social organization of 121 colonies over the past
14 years [10, 11]. We have identified differences between the
two common social forms in body size of workers and queens
[12, 13], colony lifespan [13], colony size [13], allocation to
reproductive offspring [14], and brood development time
[15]. The social forms are not differentiated at eight polymor-
phic microsatellite loci but instead form a single, apparently
genetically homogeneous population [10, 11]. Taken together,
these characteristics make this species an ideal system for the
investigation of the genetic basis of social organization.
Here, we performed a genome-wide association study to

search for genetic markers exhibiting significant allele fre-
quency differences between the two social forms. Through
genotyping-by-sequencing [16, 17] of haploid males from
monogynous and polygynous colonies within the focal
population, we identified 18,199 SNPs (see Experimental
Procedures). At a genome-wide false discovery rate of 0.01
(per-SNP a = 0.0003), 643 of these markers were significantly
associatedwith social organization in ourmixed-effectsmodel
(Table S2).
To identify the position of these markers in the genome, we

constructed a linkage map (see Experimental Procedures).
This map contained 27 main linkage groups, consistent
with the haploid chromosome number of members of the
Serviformica subgenus (Figure 1A; [18]). A total of 2,409
markers, located on 1,763 genome scaffolds, were heterozy-
gous in the focal queen. These scaffolds contained 36.7% of
the SNPs from the population data set. Strikingly, of the 136
SNP markers associated with social organization that could
be placed on the linkage map, 134 were located on a single
linkage group (Figure 1A). Only two markers did not map to
this linkage group, a number consistent with the number of
false positives expected given the false discovery rate we
used. These two markers each mapped to a different linkage
group. The linkage group (LG3) containing highly differentiated
SNPs betweenmales of monogynous and polygynous origin is
hereafter called the ‘‘social chromosome.’’ The differentiated
SNPs occurred across most of the linkage group (183 of 244
cM), with short sections of low differentiation characterizing
each end (Figure 1B).
We identified two major haplotypes at the social chromo-

some: the sequence found in males of monogynous origin is
designated as the ‘‘Sm’’ haplotype, and the sequence asso-
ciated with males of polygynous origin is called the ‘‘Sp’’
haplotype. How are these allelic differences maintained over
such a large region of the genome? We expected that this
pattern could result from suppression of recombination be-
tween the two haplotypes, and we investigated this possibility
by constructing a linkage map of markers on the social chro-
mosome from offspring of four Sm/Sp heterozygous queens.
As predicted, the linkage map showed perfect cosegregation
of the Sm versus Sp variants of markers from 36.6 to 195.1
cMalong the Sm/Sm linkagemap (Figure 2A; see Experimental
Procedures). This pattern shows that recombination is sup-
pressed between the two haplotypes in these four families.
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Figure 1. The Social Chromosomes of F. selysi

and S. invicta Are Not Homologous

Markers with a high degree of differentiation

between monogynous and polygynous males

were localized on one F. selysi linkage group

not homologous to the fire ant social chromo-

some. The circle in (A) shows linkage groups

of F. selysi (green panels) and S. invicta (blue

panels), with scaffolds from respective genomes

aligning to loci in each linkage group (gray bars,

inner circle). The interior lines show synteny be-

tween the two genomes for the F. selysi social

chromosome (green), the S. invicta social chro-

mosome (blue), and scaffolds on other linkage

groups (light gray). The FST value between mo-

nogyne and polygyne males at each SNP placed

on the linkage map is shown in the outer circle,

with colors indicating no significant differen-

tiation between the two forms (gray dots), sig-

nificant differentiation at a = 0.01 (light red dots),

and significant differentiation at a = 0.0003 (dark

red dots). In (B), a zoomed view of the FST value

between monogyne and polygyne males on the

F. selysi social chromosome shows the lack of

divergence at each end of the chromosome.
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This genomic region is characterized by high linkage disequi-
librium and differentiation between Sm and Sp haplotypes,
suggesting a long history of suppressed recombination,
beyond the single generation demonstrated with the linkage
map (Figures 1, 2, and S1).

Identifying genomic regions associated with colony social
organization raises immediate questions about the distribution
of the two social haplotypes in diploid individuals within
and across field colonies. Assessing the genotypic structure
of 42 monogynous, 44 polygynous, and 5 oligogynous col-
onies, we found that monogynous and oligogynous colonies
contained only Sm/Sm queens and workers, and Sm males
(Table 1). Polygynous colonies contained a combination of
Sm/Sp heterozygous and Sp/Sp homozygous queens and
workers, as well as Sp males. We never found Sm/Sm queens
or workers, or Sm males, in polygynous colonies. Individuals
with the Sm/Sm genotype were significantly larger than
individuals with a Sp haplotype; there
was no difference in size between Sm/
Sp and Sp/Sp workers or queens (Table
S1; see also [12, 19]).
The absence of Sm/Sm females and

Sm males from polygynous colonies is
surprising, since the Sm/Sp queens
are expected to produce Sm and Sp
male offspring and, when mated with
Sm males, heterozygous and Sm/Sm
females. The causes of the absence
of Sm or Sm/Sm individuals in polygy-
nous colonies deserve further investiga-
tion. Possible mechanisms that might
generate this unusual genotype distri-
bution include assortative mating (e.g.,
[20]), meiotic drive (e.g., [21]), differen-
tial mortality (e.g., [22]), or brood elimi-
nation by workers [23]. More generally,
studies on mate choice, brood develop-
ment, and ecological success will be
needed to explain the maintenance of
the genetic polymorphism at the social chromosome in this
system.
The genotypic system underlying social organization in

F. selysi colonies resembles that of fire ants (Table 2). Fire
ants exhibit two haplotypes associated with colony queen
number: SB and Sb. In both species, monogynous colonies
have similar homozygous genotypic compositions at the
social chromosome: F. selysi colonies contain only Sm/Sm
femalesmatedwith Smmales (Table 1), and S. invicta colonies
contain only SB/SB females mated with SB males [23]. There
are, however, at least two major differences between the
two systems. First, polygynous S. invicta colonies contain
a mix of SB/SB, SB/Sb, and rare Sb/Sb workers, while all
reproductive queens are SB/Sb [24]. In contrast, we found
a mix of Sp/Sp and Sm/Sp queens and workers, and no
Sm/Sm females or Smmales, in polygynous F. selysi colonies.
Second, S. invicta Sb/Sb workers are rare because Sb is
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Figure 2. Recombination Is Suppressed over the

Central Region of the Social Chromosome

(A) Linkagemaps of the social chromosome show

suppressed recombination in 80 worker offspring

of four Sm/Sp queens relative to 59male offspring

of one Sm/Sm queen; no recombination was

observed in offspring of Sm/Sp queens (i.e., map

length 0 cM) for markers in the region that is diver-

gent between the Sm and Sp chromosomes,

which spans 183 cM in the Sm/Sm linkage map.

The region with significantly different Sm and Sp

haplotypes is shown in orange, while regions

with little differentiation between monogynous

and polygynous individuals are shown in gray.

(B–D) Linkage disequilibrium (LD; R2) between

markers along linkage group 3 (the social chro-

mosome) is shown between Sm and Sp (B; n =

79 males), within Sp (C; n = 30 males), and within

Sm (D; n = 49 males). Between social forms,

the area of suppressed recombination shows a

higher degree of LD compared to the recombining

edges of the linkage group (B). Within Sp (C), the

high degree of LD between nonadjacent markers

(on the monogyne linkage map) suggests some

degree of chromosomal rearrangement and sup-

pression of recombination. No evidence of sup-

pressed recombination is visible in Sm (D).
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generally a recessive lethal allele in females [2, 23]. The
F. selysi Sp allele is not lethal in homozygous individuals, as
Sp/Sp queens and workers were present in many polygynous
colonies (Table 1).

The social chromosome of F. selysi shows structural similar-
ities with that of S. invicta (Figure 1A). In both species, a large
nonrecombining region is associated with variation in colony
social organization, which includes having one or more
queens, as well as multiple correlated morphological and
behavioral traits (Table 2). Each nonrecombining region is
flanked by genomic regions that recombine between the two
haplotypes. Hence, the lineages in which the two species orig-
inated, which separated from their common ancestor roughly
130 million years ago [25] and represent distinct origins of
polygyny, independently evolved a similar genomic architec-
ture associated with social organization.

Although the two species exhibit similarities in the genetic
architecture associated with convergent, multitrait pheno-
types, we detected no homology between the social chromo-
somes of F. selysi and ofS. invicta. The scaffolds in the F. selysi
social chromosome align to S. invicta scaffolds in seven link-
age groups, not including the S. invicta social chromosome,
while the F. selysi scaffolds aligning to the S. invicta social
chromosome occur in five non-social linkage groups (Fig-
ure 1A). Overall, we found no evidence that the social chromo-
somes of the two species harbor the same set of genes.
Despite this general absence of homology, it is still possible
that a few genes that were not present on our linkage map
are shared between the social chromosomes of F. selysi and
S. invicta. Moreover, different transcription factors or other
trans-acting elements in each social chromosome may trigger
a similar downstream regulatory cascade in the two species.
More work is needed to pinpoint the causative mutations
and developmental pathways leading to alternative social or-
ganization in both species.

The convergence of the genetic architecture underlying
F. selysi and S. invicta social organization sheds light on
the genomic evolution underlying coordinated shifts in multi-
ple traits. Nonrecombining regions associated with such
evolutionary shifts are widely acknowledged to play a central
role in speciation and local adaptation (e.g., [26–28]). The ant
social chromosomes show that this genetic architecture is
also important for maintaining sympatric polymorphisms.
Nonrecombining regions are likely shaped by similar selec-
tion pressures, which have been explored in models of
coadapted gene complexes, also called supergenes (e.g.,
[5, 6, 29, 30]). Dobzhansky [29] proposed that zones of sup-
pressed recombination in the genome maintain beneficial
combinations of alleles. These diverging allele combinations
can be positively selected either in alternative external envi-
ronments, as in locally adapted populations, or in alternative
phenotypes (i.e., when genes harbor alleles with different
fitness effects in males and females, or in monogynous and
polygynous colonies; e.g., 31]). Suppressed recombination
between such genes often involves chromosomal inversions,
gene translocations, insertions, or deletions [29] but can
also occur in the absence of chromosomal rearrangements
(e.g., [32, 33]).
Supergenes underlie very diverse coadapted phenotypes,

from the maintenance of two sexes through nonrecombining
sex chromosomes [31] to the control of wing coloration and
mimicry in Heliconius butterflies [4] and the maintenance of
alternative behavioral syndromes in mice and white-throated
sparrows [20, 34–36]. A key difference between the F. selysi
social chromosome and many previously studied supergenes
indicates that the F. selysi social chromosome follows a
distinct evolutionary trajectory. In F. selysi, both social chro-
mosome haplotypes occur in homozygotes. In contrast, in
many other systems, one haplotype occurs only in hetero-
zygotes. For example, mice and sparrows strongly prefer to
mate with individuals exhibiting the opposite behavioral syn-
drome [20, 34–36], and one haplotype tends to be a recessive
lethal in both fire ants and mice [2, 35]. Consequently, one
haplotype is restricted to heterozygotes, recombination
ceases for this haplotype, deleterious mutations accumulate
through Muller’s ratchet, and this haplotype tends to degen-
erate [31] (e.g., the Sb haplotype in fire ants has a higher
frequency of repetitive elements and larger introns than the



Table 1. Genotype and Allele Frequencies of Individuals from

Monogynous, Oligogynous, and Polygynous Field Colonies

Genotype

Frequencies

Observed

Allele

Frequencies

Observed

MM MP PP M P

Males

Monogyne (N = 22; n = 60) 2 2 2 1 0

Oligogyne (N = 3; n = 13) 2 2 2 1 0

Polygyne (N = 7; n = 58) 2 2 2 0 1

Nonreproductive queens

Monogyne (N = 8; n = 19) 1 0 0 1 0

Oligogyne (N = 2; n = 11) 1 0 0 1 0

Polygyne (N = 5; n = 40) 0 0.2 0.8 0.1 0.9

Reproductive queens

Polygyne (N = 23) 0 0.35 0.65 0.17 0.83

Workers

Monogyne (N = 35; n = 273) 1 0 0 1 0

Oligogyne (N = 5; n = 40) 1 0 0 1 0

Polygyne (N = 31; n = 237) 0 0.68 0.32 0.34 0.66

N refers to the number of colonies used; n refers to the total sample of indi-

viduals.

Table 2. Comparison of the Social Organization of F. selysi and S. invicta

Formica selysi Solenopsis invicta

Monogynous

(Oligogynous) Polygynous Monogynous Polygynous

Phenotypic traits

Number of

reproductive

queens per

nest [9, 11]

1 (2) 2 to 15a 1 2 to 200

Relative gyne

body size [9, 19]

large small large small

Relative worker

body size [9, 12]

large small large small

Relative nest

density [9, 13]

low high low high

Relative

investment

in sexual

offspring [9, 14]

high low high low

Genetic basis (this article, [2])

Queen

genotypes

Sm/Sm Sm/Sp,

Sp/Sp

SB/SB SB/Sb

Worker

genotypes

Sm/Sm Sm/Sp,

Sp/Sp

SB/SB SB/SB,

SB/Sb

Alate male

genotypes

Sm Sp SB SB, Sb

In F. selysi, Sm and Sp refer to the social chromosome haplotypes found in

monogynous males and polygynous males, respectively. In S. invicta, the

corresponding haplotypes are denoted SB and Sb [2].
aWe have observed up to 15 queens in colonies, but it is likely that there are

more queens present in highly polygynous colonies, since queens spend

most of their time in the subterranean nest chambers, and we only survey

the top layer of the nest.
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SB haplotype [2]). In F. selysi, viable Sm/Sm and Sp/Sp ho-
mozygotes are common, so degeneration of one haplotype
is not expected despite the suppression of recombination
between Sm and Sp (Figure 2A). We do, however, observe
reduced polymorphism in the Sp haplotype compared to
the Sm, and further research is required to determine the
implications of this pattern (Figure S2). Comparing systems
that differ in assortative mating tendencies and haplotype
degeneration will provide insights into the factors that initiate
chromosomal degeneration in autosomal nonrecombining
regions.

Overall, the convergence in genetic architecture and
phenotype of two independent socially polymorphic ant spe-
cies demonstrates that the formation of nonrecombining
regions is a key genetic mechanism underlying transitions
in social organization in ants. The parallel evolution of non-
recombining regions underlying variation in social systems
strongly supports recent theoretical claims that chromo-
somal rearrangements and the formation of supergenes are
important for the evolution of novel phenotypes [5, 6, 37].
Blocks of suppressed recombination would facilitate co-
ordinated shifts in coadapted traits, which may lead to speci-
ation and/or adaptive shifts, or allow for the maintenance
of complex phenotypic polymorphisms [3, 4, 38, 39]. The
lack of homology between the social chromosomes of two
independent ant species further suggests that the genetic
systems underlying the convergent evolution of complex
phenotypes are not strongly constrained at the level of indi-
vidual genes. At a larger scale, the similar architecture and
independent evolution of social chromosomes and other su-
pergenes point to common principles governing the suppres-
sion of recombination in large genomic regions controlling
complex coadapted polymorphisms.
Experimental Procedures

A genotyping-by-sequencing approach [16, 17] was used to test the asso-

ciation of markers throughout the genome with social structure and to
construct a linkagemap for F. selysi. For the association study, the genomes

of 79 haploid males from a total of 23 field colonies from a single locality

were scanned (2–5 individuals from each of 18 monogynous colonies and

5–6 individuals from each of 5 polygynous colonies). Social structure of all

colonies was independently assessed through microsatellite parentage

analysis [10, 11]. A linear mixed-effects model was used to test for asso-

ciation between each SNPmarker and the social organization of the colony.

From 59 male offspring of a single monogynous queen, a linkage map

was generated. In complement, a draft genome was produced from a single

monogynous male. This genome assembly was used to investigate synteny

between F. selysi and S. invicta. Across the social chromosome, ninemicro-

satellite and five SNPmarkers were developed from the genome, and these

were used to prepare a linkage map for 80 worker offspring of four hetero-

zygous queens. Three SNPs that were diagnostic for social organization

were further used to assess the genotypic structure of males, queens,

and workers from additional F. selysi colonies. Additional males (n = 52),

unmated queens (n = 70), reproductive queens (n = 23), and workers (n =

550) from 91 field colonies belonging to the same population were tested

with this method.

Detailed methods are provided in the Supplemental Experimental

Procedures.

Accession Numbers

Genetic sequences reported herein have been deposited at the NCBI

Sequence Read Archive with the accession numbers PRJNA260443

(genome), PRJNA260459 (association study), and PRJNA260462 (linkage

map).

Supplemental Information

Supplemental Information includes two figures, three tables, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2014.09.071.
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