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SUMMARY

Collective behavior, such as shoaling in teleost fish,
is driven by the perceptual recognition of conspecific
animals. Because social interactions are mutual, it
has been difficult to disentangle the exact sensory
cues that trigger affiliation in the first place from
those that are emitted by receptive and responsive
shoal mates. Here, we overcome this challenge in a
virtual reality assay in zebrafish. We discovered that
simple visual features of conspecific biological mo-
tion provide a potent shoaling cue. Individual juvenile
fish shoal for hours with circular black dots projected
onto a screen, provided these virtual objects mimic
the characteristic kinetics of zebrafish swim bouts.
Other naturalistic cues previously implicated in
shoaling, such as fish-like shape, pigmentation
pattern, or non-visual sensory modalities are not
required. During growth, the animals’ stimulus pref-
erences shift gradually, matching self-like kinetics,
and this tuning exists even in fish raised in isola-
tion. Virtual group interactions and our multi-agent
model implementation of this perceptual mechanism
demonstrate that kinetic cues can drive assortative
shoaling, a phenomenon commonly observed in field
studies. Coordinated behavior can emerge from
autonomous interactions, such as collective odor
avoidance in Drosophila, or from reciprocal interac-
tions, such as the codified turn-taking in wren duet
singing. We found that individual zebrafish shoal
autonomously without evidence for a reciprocal cho-
reography. Our results reveal individual-level, innate
perceptual rules of engagement in mutual affiliation
and provide experimental access to the neural mech-
anisms of social recognition.

INTRODUCTION

Social interactions are essential to animals for survival and repro-

duction, suggesting that dedicated neuronal circuits exist to pro-

cess socially relevant information [1–3]. Indeed, specific groups

of neurons in flies, mice, and primates exert causal roles on so-

cial tasks such as social recognition, affiliation, mating, and

aggression [4–6]. Neuromodulators such as oxytocin, serotonin,
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and tachykinin regulate these behaviors across species and pro-

vide striking examples of evolutionary conservation in the control

of social interactions, highlighting the potential of studying

fundamental social principles in model organisms [4, 5, 7].

Social behaviors are triggered and regulated by conspecific

cues, and identifying their precise nature is central to social

neuroscience. The best understood examples of such cues are

pheromones that control innate behaviors via streamlined olfac-

tory circuits [4, 8, 9]. In Drosophila melanogaster, for example,

the pheromone 11-cis-vaccenyl acetate activates olfactory sen-

sory neurons which express the olfactory receptor Or67d.

Output from Or67d neurons triggers sex-specific changes in

mating behavior via sexually dimorphic connections with brain

regions such as the lateral horn [9]. In comparison, much less

is known about fundamental visual cues despite the fact that

vision is required for many social behaviors including collective

motion in groups [10], particularly in humans where the impor-

tance of pheromones is unclear [8]. Studies on display behavior

in cichlids and face processing in primates provide just a glimpse

of socially relevant visual cues awaiting discovery [1, 11, 12]. One

major challenge to analyzing vision during social interactions is

the dynamic, intermingled nature of visual cues exchanged by

interacting animals. This hampers a systematic analysis of

stimulus-response relationships and each animal’s causal

contribution to the joint behavior, particularly in animal groups

engaged in collective behavior such as swarm coordination

[3, 13, 14]. Quantitative descriptions of freely moving fish shoals,

bird flocks, and human crowds provide evidence that formation

andmaintenance of intraspecific groups are governed by a small

number of simple behavioral rules, such as long-distance attrac-

tion and short-distance repulsion among individuals [3, 10, 15–

17]. However, the challenge of isolating the fundamental visual

cues and perceptual processes driving collective behavior re-

mained unsolved and prevented dissecting the mechanistic im-

plementation of collective rules at the level of neural circuits.

A powerful model of collective behavior is zebrafish shoaling, a

form of affiliation with conspecifics that facilitates predator

avoidance, foraging, and stress coping [3, 18, 19]. Mutual attrac-

tion among zebrafish develops between 10 to 20 days of age,

when an increasing fraction of swim steering events become so-

cially biased toward neighboring fish and animals maintain a

preferred distance from one another [17, 20, 21]. Previously, sen-

sory triggers of shoaling were analyzed in adult fish by recording

the location of a focal individual relative to one or several test

fish separated by a transparent vertical divider. Such experi-

ments revealed that individual animals were more attracted to-

ward larger groups than toward single animals and preferred
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pigmentation types experienced during early development

[22, 23]. More recently, analysis of adult zebrafish responding

to semi-realistic fish images on computer screens or biomimetic

replica revealed effects of stimulus size, color, shape, and mo-

tion on attraction [14, 24]. Together, these results paint a com-

plex picture of multiple interacting cues without any one visual

feature dominating attraction. Bridging the gap between shoal-

ing rules inferred from freely moving animals and attraction

toward stimuli across a divider requires dynamic stimulus pre-

sentation and analysis of unrestrained interactions with artificial

stimuli. Such experiments become feasible through the advent

of closed-loop stimulus presentation and observer-centric vir-

tual reality techniques [25, 26]. In this study, we use a virtual-re-

ality setup to present dynamic social stimuli to freely swimming

animals at elevated throughput for psychophysical analysis in

comparison to natural shoaling with real conspecifics. We find

that kinetics features representing fish-like biological motion in

the absence of photorealistic fish-like appearance trigger persis-

tent shoaling. We analyze shoaling of developing juvenile ani-

mals over a range of kinetic stimulus parameters and find an

age-specific preference for self-like motion. By comparing

mutual interactions between fish to interactions with non-inter-

active stimuli and simulated interactions in a multi-agent model,

we propose that individuals shoal autonomously without recip-

rocal dialog. Together, these results outline perceptual principles

of social recognition and provide a starting point to analyze the

organization of neural circuits controlling collective behavior.

RESULTS

Virtual Interactions Driven by Cross-Projected
Interactive Dots
To investigate social affiliation, we tracked pairs of fish freely

swimming in shallow dishes (Figure 1A). Under such conditions,

zebrafish readily engage in shoaling [20]. Figure 1B shows an

example of two juvenile fish (26 days post-fertilization [dpf])

spontaneously following each other closely over almost the

entire observation period of 20 min. The inter-animal distance

(IAD, 5–20 mm) is well below the average distance expected

from chance encounters (40 mm) (Figure 1B), a hallmark of

shoaling [20]. We defined attraction as the percent reduction in

mean IAD relative to control IAD expected by chance; this index

was highly significant in each of 7 pairs at this age (Figure 1B). In

control experiments, we found that fish swimming individually in

vertically stacked transparent dishes were still attracted to one

another, indicating that vision provides sufficient sensory cues

for shoaling (Figure S1A). Vision was also required: upon turning

off all visible light, animals separated within seconds to chance

level IAD (Figure S1B).

These findings prompted us to devise a simple virtual reality

shoaling assay to reveal the fundamental visual cues that drive

shoaling. We placed fish in separate dishes above a projection

screen onto which we cross-projected in real time a black dot

at the location of another fish (Figures 1A and S1E). This dot virtu-

ally links two physically separated fish and was therefore termed

‘‘interactive’’. Notably, it enables mutual interactions in the

absence of visual detail such as body shape, pigmentation, tail

motion, depth, or texture—cues that were previously implicated

in regulating shoaling [14, 24, 25]. Pairs readily interacted via
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interactive dots of 3.7 mm diameter (Figure 1B and Video S1);

their attraction was on average 87% of physical attraction

measured in the same animals (physical: 0.65 ± 0.06 SD; virtual:

0.56 ± 0.08 SD. Figure 1B). The strength of attraction increased

sharply with age and was correlated between physical and vir-

tual conditions from 17–26 days of age, suggesting that both

assays probe a related behavior that matures during this time

(Figure 1C). Shoaling is a persistent behavior of zebrafish in the

wild [19]. Accordingly, physical and virtual attraction were main-

tained over a 12 hr period and fell only toward the evening (Fig-

ure 1D), demonstrating persistent engagement of the animals

with interactive dots.

Onset of shoaling occurs at around 2 weeks of age [20, 21], a

period of rapid development in zebrafish, including a doubling in

body length from 4mm to 8mmwithin 2weeks [27] and a gradual

transition from well-isolated swim bouts to near-continuous

swimming [27, 28] (Figure S2). To dissociate the roles of

increased social drive and animal size on mutual attraction dur-

ing animal growth, we modulated the dot diameter from 0.9 mm

to 7.5 mm and recorded virtual interactions in 70 pairs from 10–

27 dpf (Figures 1E–1G). From 14 dpf, an increasing fraction of

pairs showed attraction to 3.7 mm dots, reaching 100% of pairs

at 19 dpf (Figure 1E). Attraction was strongest to dots of diame-

ters of 1.8 and 3.7 mm, with a trend for older animals to prefer

larger dots (Figure 1F). These sizes correspond to the parts of

a juvenile zebrafish that provide the highest contrast such as

the head, torso, and the eyes (Figure 1F).

Natural shoaling is explained in part by two behavioral rules:

long-range attraction and short-range repulsion together result

in characteristic animal spacing [3, 17]. Neighborhoodmaps rep-

resenting the likelihood of finding a neighbor in space reveal a

time average of these opposing behaviors [16]. We compared

neighborhood maps of virtually versus physically interacting an-

imals with respect to this signature. Physically interacting ani-

mals less than 14 dpf mainly exhibited repulsion and attraction

was increasingly prominent in older animals (Figure 1G). Maps

of virtually interacting animals weremost similar to physical inter-

action at dot sizes of 1.8 to 3.7 mm with a ring of attraction

around a central zone of repulsion (Figures 1G and S2). Short-

range repulsion from the most attractive stimuli indicates that

dot stimuli trigger shoaling behavior rather than pursuit of poten-

tial prey. From these results, we conclude that a circular black

dot, which interactively mirrors the position of another animal,

can induce shoaling.

Fish-like Stimulus Kinetics Trigger Attraction toward
Passive-Attractive Dot Stimuli
Next, we sought to understand the minimal motion parameters

that render a dot stimulus attractive to induce shoaling. Object

speed is a key stimulus feature in hunting and escape behavior

[29–31], suggesting that dot speed might also regulate social

affiliation. Alternatively, animals might extract higher-order mo-

tion parameters such as acceleration or path curvature. For

example, acceleration oscillates once every swim bout because

propulsion and gliding alternate at about 1–2 Hz [28], a kinetic

signature of biological motion [32] in zebrafish, which may be

used to detect conspecifics.

To address these possibilities, we measured individual ani-

mals’ attraction to dots moving along a set of synthetic stimulus
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Figure 1. Virtual Interactions Driven by Cross-Projected Interactive Dots

(A) Schematic of experiments: Two animals interact physically (left) or virtually (right) in a watch glass of 10 cm diameter. In the virtual condition, a black dot is

projected onto a screen below each dish at the location of the animal in the other dish. Double arrows indicate dot-animal distance or inter animal distance (IAD).

(B) Representative IAD traces for one pair tested successively in both interaction modes. Bar graphs indicate mean ± 1 SD of real IADr over 120 min for these

animals versus chance level IADs obtained by time shuffling the position data. Right: An attraction index is calculated as (IADs-IADr)/IADs. Age: 26 dpf. Data points

indicate individual pairs, red bars indicate mean ± 1 SD, 120min data per pair. Dashed line: 95%confidence interval (CI) for h0 of no attraction, see STARMethods

and Figure S1 for detail.

(C) Attraction in individual pairs correlates between interaction modes across age. n = 7 pairs per age group. 120 min data per animal.

(D) Attraction persists throughout the day. Traces represent mean during 29 min bins, shading represents 95% CI over animals. n = 14 pairs (physical), 21 pairs

(virtual), age: 23–25 dpf.

(E) Attraction in the virtual mode increasingly exceeds 95% CI for no attraction between 2–3 weeks of age. Dot size = 3.8 mm. Data points represent individual

pairs, >40 min data per animal. Red bars indicate mean at each age ± 1 SD. n = 70 pairs.

(F) Dot diameter modulates attraction. Left, data points represent mean attraction for four age groups. Dot sizes were 0, 0.9, 1.8, 3.7, 7.5 mm. Right, data points

represent mean of the most attractive dot diameter over animals at each age ± 1 SD. Dashed line represent linear fit through the mean values. Same data as (E).

Image shows a 21 dpf animal. Scale bar: 2 mm.

(G) Neighbor density distribution during physical interactionswith another animal (left) and virtual interactions via black dots of variable diameter (right). A focal fish

defines the center of each map. Red and blue color indicate higher and lower probability than chance, respectively, of finding the neighbor animal at a given

location. Maps are mean probability over multiple animals. Physical interaction data (Fish) are the same as in (C). Virtual interaction data are the same as in (E).

Scale bar represents 60 mm. See also Figure S1 and S2 and Video S1.
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Figure 2. Fish-like Stimulus Kinetics Trigger Attraction toward Passive-Attractive Dot Stimuli

(A) Schematic of stimulus paths and kinetics: Colored data points indicate dot position in consecutive frames (33 ms). Constant speed paths were generated by

interpolating natural paths while maintaining average speed.

(B) Natural bout kinetics render dot stimuli attractive. n = 36 animals, 21–30 dpf. Dashed line: 95% confidence interval (CI) for h0 of no attraction. ***: significant at

p < 0.001. Dunn’s multiple comparisons test for matched samples following ANOVA Friedman test, p < 0.0001. Gray lines connect individuals across stimuli. See

Table S1 for all pairwise comparisons.

(C) Attraction to dotsmoving intermittently along a knot-shaped path. Bout interval was varied at fixed average speed of 5.7mm/sec. ‘‘Real’’ denotes attraction to

a dot moving on a natural path with natural bouts. Data points represent mean attraction over animals at each age group ± 1 SD. n = 15–30 animals per age group.

(D) Optimal bout interval (gray) tracks age-specific spontaneous swim bout frequency (black). Data represent mean ofmost attractive bout interval over animals at

each age. Error bars are 1 SD. Dashed lines represent linear fit through group means. Same data as (C).

(E) Rearing animals in isolation does not affect overall attraction or optimal interval at 18 dpf. Data aremean ± 1 SD. n = 14, 16 group, isolated. NS = not significant:

Mann-Whitney test p > 0.5.

(F) Constant speed stimuli (update interval = 33 ms) yield low attraction at all speeds. Intermittent motion stimuli (update interval = 666 ms) are most attractive at

speeds that parallel natural swim speed across age 15-27 dpf. Data points represent mean ± 1 SD.

(G) Gray data points represent mean of most attractive dot speed over animals at each age ± 1 SD. Black data points represent average swim speed in the

absence of a stimulus, n = 15–30 animals per age group. Dashed lines represent best linear fit through groupmeans. See also Figure S2 for correlations of agewith

speed and bout frequency, Video S2 and Figure S3.
paths that dissociated swim kinetics and swim paths by replace-

ment with circular paths and constant speed, respectively (Fig-

ure 2A). Such dots were non-interactive, moved identically for

each animal and were, hence, called ‘passive-attractive’. Fish

also followed passive-attractive dots allowing us to quantify indi-

vidual’s unilateral attraction (Figure 2B; Video S2). We noticed a

preference for dot movement with natural swim kinetics over
3526 Current Biology 28, 3523–3532, November 19, 2018
movement at constant speed that was largely independent of

the dot path (Figure 2B, Table S1), suggesting that fish recognize

swim kinetics as a sign stimulus [11] for social affiliation.

Next, we decomposed natural swimming by simplifying its

bout structure. We measured attraction toward dots moving in

discontinuous jumps (bouts) over a range of intervals from

continuous to intermittent bout-like motion at a fixed average
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Figure 3. Rapid Evaluation of Social Attrac-

tiveness

(A) Dot attractiveness is modulated at transitions

from intermittent motion (I: 666 ms update rate) to

constant speed (C: 33 ms update rate) or an

invisible dot (X). The four stimulus conditions last

6min each (4min shown) and repeat in randomized

order for 8 hr. The invisible dot disappears for 90 s

but is analyzed as if moving at constant speed

along the same path as a visible dot.

(B) Dot-animal distance reaches a steady state

within 1 min after the transition (dashed lines). This

separation represents a combination of a change in

attraction and drift toward a new steady state.

Lines represent mean distance, shading repre-

sents 95% CI, n = 14 animals, 20–23 dpf.

(C) Same data as B, normalization highlights simi-

larity of the time courses.

(D) Slope of dot-animal distance during 10 s after

stimulus transition. NS: not significant, related

samples t test p > 0.15. See also Figure S4 for in-

dividual animal dot-animal distance.
speed. Attraction was strongly regulated by bout interval from

0.03 s to 1.3 s (Figure 2C). We detected a negative correlation

of the preferred bout interval with age: it ranged from 0.97 ±

0.51 s to 0.65 ± 0.32 s between 15 - 27 dpf, closely tracking

the fish’s own spontaneous swim bout frequency at each age

(Figure 2D). Strikingly, the overall attraction and age-specific

optimal bout interval of fish reared in isolation was similar to con-

trol animals raised in groups (Figure 2E). This indicates that an

innatemechanism underlies the development of stimulus pattern

recognition.

To ask how speed modulates attraction, we presented fish

with intermittent and continuous motion at average speeds of

1.5–24 mm/s. Intermittent motion was more attractive at all

speeds (Figure 2F), and attraction dropped sharply at speeds

above 10 mm/s. The preferred dot speed rose from 2–6 mm/s

between 15 and 27 dpf, again tracking the animal’s own sponta-

neous swim speed (Figure 2G). In contrast, continuous motion

was ineffective at all speeds, as was inverting dot contrast to

light on dark (Figure S3). This tuning to self-like motion is further

evidence that virtual interactions represent social affiliation.

Rapid Evaluation of Social Attractiveness
Next, we sought to reveal the timescale on which fish integrate

visual information when judging dot attractiveness. Juvenile ze-

brafish perform swimmaneuvers on a sub-second timescale, re-

sulting in rapidly fluctuating IAD time series of individual pairs

(see Figure 1B). This observation inspired us to analyze IAD

with passive attractive dots on a frame-by-frame basis while

changing dot kinetics (Figure 3A). At one extreme, animals might

adjust attraction levels as soon as stimulus kinetics change,

observable as a sudden change in IAD. In a different scenario,

animals might display persistent or gradually decaying attraction

for a limited time. For example, animals might continue to follow

a dot that was switched from intermittent to continuous motion

as if it was still moving intermittently. This would manifest as a
delayed or slowed change in IAD. On average, fish had low

steady-state IAD during intermittent motion and high IAD during

continuousmotion (Figure 3B). After a transition from intermittent

motion to continuous motion, IAD detectably rose in under 5 s

and approached the higher steady-state within 1 min (Figures

3B and S4). The increase in IAD potentially reflects a combina-

tion of two processes: (i) the animal re-evaluating the stimulus

to a lower level of attractiveness, potentially with memory of

stimulus history that might cause persistent attraction; (ii)

random diffusion-like transition to the higher steady-state IAD

for continuous dot motion at a rate that depends on swim speed

and arena geometry.

To isolate the rate of stimulus re-evaluation, we compared

separation from a dot transitioned from intermittent motion to

continuous motion (I-C-I) versus separation from a dot turned

invisible for 90 s. Invisible dots were also considered to move

continuously for the purpose of IAD quantification (I-X-I). Animals

effectively do not receive updates on stimulus position for invis-

ible dots and, as a consequence, cannot actively maintain low

IAD once the dot disappears. Thus, the increase in IAD during

I-X-I transition exclusively represents the random process. Ani-

mals separated at similar rates from invisible or continuously

moving dots (Figure 3B) and normalizing IAD time series of sep-

aration to account for different steady-state levels rendered the

time series and rates of change indistinguishable (Figure 3C,

3D, and S4). This implies that juvenile zebrafish evaluate kinetic

attractiveness and adjust steering decisions on a timescale of

seconds.

Individual Social Drive Predicts Mutual Interactions
A fundamental challenge in analyzing mutual interactions is dis-

secting each individual’s contribution. For example, mutual

attraction within a pair and an individual’s apparent sociability

may be determined by each individual’s social drive toward the

partner, by each individual’s attractiveness as evaluated by the
Current Biology 28, 3523–3532, November 19, 2018 3527
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Figure 4. Individual Social Drive Predicts Bilateral Interactions

(A) Both animals potentially contribute social drive and attractiveness to mutual attraction observed in bilateral interaction. A single animal’s social drive de-

termines observed attraction during unilateral interactions.

(B) 15 animals (21 dpf) are sequentially linked for bilateral interactions via interactive dots in all possible 105 pairwise combinations. Each animal is also exposed to

a passive-attractive dot moving intermittently to measure unilateral interaction. Rightmost column separated by red dashed line and histogram right represent

unilateral attraction and determines plot order. Colors representmean attraction for each pair over six repeated trials (5min each). Gray indicates attraction below

95% CI (0.09). Histogram above indicates column-wise mean attraction. See also Figure S4D.

(C) Pairwise bilateral attraction is predicted as the sum of the two individuals’ unilateral attraction. Each data point represents one of 105 possible pairings.

Dashed line is linear fit through data. Dotted line is unity.

(D) Schematic of multi-agent model inspired by Hinze et al. [20]. Agent n turns toward other agents with social turn probability Psn or into a random direction with

probability 1-Psn. Agent speed, bout rate, arena size and simulated frame rate match our data.

(E) Mutual attraction between agents varies with social turn parameter Psn. Ps1 = 0 corresponds to unilateral attraction of agent 2.

(F) The model predicts observed bilateral attraction using Psn parameters inferred from unilateral interactions. Each dot represents one of 105 models using Psn

parameters corresponding to the animal pairs in (C). Dashed line represents unity.
partner, or by a combination of these two. In addition, mutual in-

teractions may require explicit reciprocity with the partner—for

example, in the form of codified turn-taking as observed in

duet singing inwrens. During zebrafish shoaling, synchronization

of swim bouts between neighbors [21] may provide a cue to

boost attraction in a synergistic manner when such reciprocity

is detected. To ask if individual’s social drive increases with

reciprocating partners, we sequentially measured bilateral

attraction within all possible 105 virtual pairings of 15 animals

via interactive dots. In each animal, we also measured unilateral

attraction toward a passive-attractive dot (Figures 4A and 4B).

Unilateral attraction is not confounded by the individual’s attrac-

tiveness but instead is a direct reflection of social drive. Unilat-

eral attraction of individuals and bilateral attraction within

specific pairs were repeatable across trials but varied substan-

tially between animals (Figures 4B and S4D). Mutual attraction

of individuals to other animals was correlated across pairings, re-

sulting in a range of mean bilateral attraction (MBA), reflecting
3528 Current Biology 28, 3523–3532, November 19, 2018
apparent sociability of individual animals from effectively non-

social to highly social (Figure 4B).

We found that unilateral attraction correlated with MBA

(R = 0.91, Figure 4B), implying that mainly social drive, and not

attractiveness, determines mutual interactions and, thus,

apparent sociability in our data. We could therefore predict bilat-

eral attraction for each pair as the linear sum of each individual’s

unilateral attraction (Figure 4C).

Next, we sought to further understand effects of individual’s

social drive and a potential role for reciprocity on pair-level mea-

surements of IAD and attraction. To this end, we built a multi-

agent NetLogo [33] model, implementing a simple attraction

rule [20] controlled by a social drive parameter (Figure 4D). In a

multi-agent model, individuals are modeled as agents that

interact with a virtual environment and with each other according

to user-defined rules at each simulated time step. Such models

have been used extensively to explore interaction rules underly-

ing collective behaviors [15].
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Figure 5. Motion Cues Induce Age-Assortative Shoaling

(A) Schematic of a virtual quartet consisting of two animals each of two types (s: small = 16 dpf and L: large = 23 dpf). Each animal sees black dots underneath at

the location of the other three animals. All dots are of the same size. Interspersed are time periods where the same animals are virtually linked in pairs.

(B) Multi-agent model for quartet of 2 types differing only in Psn predicts attraction between types (t1-t2) as the mean of attraction within types.

(C) Attraction between types (s-L) was lower than predicted by the model (green). This preference was similar when tested simultaneously in a quartet or

separately in pairs. Data points represent mean attraction over 4-6 repeated trials. Note that quartet interactions were analyzed and plotted pairwise: s-L

attraction represents mean over the four possible s-L combinations. Red bars indicate group means ± 1SD. n = 9 3 4 animals. Gray lines connect repeated-

measures of the same pair. ***p < 0.001, related samples t test. See also Figure S5.
The virtual arena was modeled as a circle of 100 mm

diameter, and agents moved at constant speed of 6 mm/s,

calculating 30 updates per simulated 1 s modeled time, closely

matching our experimental conditions (Figure S2). Agents

move forward at each step and make a turn once per second.

This effectively ties steering events to the frequency of swim

bouts, a simplification justified by the observation that swim tra-

jectories of larval zebrafish consist of straight segments inter-

spersed with high angle turns at swim bouts [28].

To focus our analysis on the effect of individual’s social

drive on attraction, we followed previous work [20] and imple-

mented only one simple attraction rule, ignoring other proposed

interaction rules such as short-range repulsion or alignment of

agents.

Turn direction of agent n is controlled by the following rule:

1. Social turn: with probability Psn turn toward the center of

mass of all other agents in the arena, or,

2. Random turn: with probability 1 - Psn turn to a random

direction.

Thus, Psn dictates the fraction of socially driven turns, a

parameter proposed to mature during the ontogeny of zebrafish

shoaling [20].

To simulate the effect of an individual’s social drive on mutual

attraction (Figure 4E), we repeatedly ran the model for 72,000

steps (40 min simulated time) using different sets of Ps1 and

Ps2 for two agents, respectively. Attraction increased with Ps of

both agents and reached a plateau at 0.85 attraction (Figure 4E).

The curve for Ps1 = 0 represents unilateral attraction of agent 2

because agent 1 was effectively asocial (Figure 4E). This curve

allows to infer Ps for each animal in Figure 4B based on observed

unilateral attraction.

Next, we evaluated how closely our model matches observed

mutual attraction. We used the inferred values of Ps for the 15

animals in Figure 4B to create 105 combinations of Ps1 and Ps2

for the model. Model attraction was highly correlated with

observed bilateral attraction using these parameters (R = 0.80,

Figure 4F). Importantly, this model does not explicitly implement

synergies in mutually interacting pairs. Thus, juvenile zebrafish
did not distinguish between interactive versus passive-attractive

dots. We conclude that individuals autonomously evaluate

conspecific motion as a shoaling stimulus mainly as a function

of their own social drive.

Motion Cues Induce Age-Assortative Shoaling
Field observations of fish shoals commonly describe affiliation

preferences for conspecifics and size-matched animals [3].

Such assortative shoaling can help individuals to evade detec-

tion by confusing predators who may target rare phenotypes, a

form of selective predation also known as the oddity effect [3].

To ask how differences in social drive and preferences for

specific motion kinetics might act to sort larger groups, we

analyzed virtually interacting quartets composed of two

younger, weakly social fish (16 dpf) and two older, strongly so-

cial fish (23 dpf) (Figure 5A). Each animal saw three dots of

equal size at the position of the other fish. This configuration

discards stimulus size as a factor influencing affiliation but re-

tains age-specific stimulus kinetics. To test for affiliation prefer-

ences within a quartet, we calculated pairwise attraction within

and between the age groups. As predicted, we found weakest

and strongest attraction within the young and old groups,

respectively, and intermediate inter-group attraction (Figure 5C).

To assess if the observed inter-group attraction reflects a pref-

erence for age-specific kinetics, we returned to the multi-agent

model and predicted inter-group attraction in the absence of

age-specific kinetic preferences. To this end, groups of four

agents were simulated, each agent belonging to one of two

types. The types differed only in psn. We repeatedly ran the

model, varying ps1 while keeping ps2 constant. We found that

inter-group attraction was always the mean of intra-group

attraction for all combinations of ps1 and ps2 tested (Figure 5B).

We therefore predict inter-group attraction as precisely the

mean of intra-group attraction for all quartets of real animals

(Figure 5C). However, inter-group attraction was lower than

predicted by this simple model (Figure 5C). This result is

consistent with active selection of preferred stimulus kinetics

among multiple stimuli. To ask if indirect effects of different

swim kinetics can explain assortative shoaling [34], we
Current Biology 28, 3523–3532, November 19, 2018 3529



extended the model to implement group differences in swim

speed, bout interval and an explicit within-group preference

as a proxy for kinetic preferences. Of these parameters, only

explicit within-group preference reproduced the observed affil-

iation preference (Figure S5). For comparison, we also analyzed

attraction in the same animals when virtually linked into the six

possible pairs of each quartet for pairwise interaction. Attrac-

tion within and across age groups was similar between pairs

versus quartet in the same animals, demonstrating that the

presence of two additional stimuli neither confuses nor en-

hances the animal’s preferences for motion kinetics (Figure 5C).

From these results, we conclude that age-specific differences

in motion cues provide sufficient sensory information to induce

assortative shoaling.

DISCUSSION

Until now, sensory cues implicated in shoaling were numerous,

and their link to naturally unfolding behavior was unclear. Our re-

sults suggest that the perceptual basis of shoaling is simpler than

previously thought. We discovered that the social ‘‘instinct’’ [11]

of zebrafish is released by visual features of the swim kinetics of

another zebrafish. Imposing the bout structure typical of a

juvenile fish on the movement of a projected, two-dimensional

dot in a virtual reality arena elicited shoaling behavior that resem-

bled physical interactions with respect to its ontogeny, strength

of affiliation, and relative animal spacing.

Biological motion is a potent releaser of intraspecific and inter-

specific interactions in fish [35, 36], birds [37], and mammals

including humans [38], and impaired interpretation of biological

motion has emerged as an early heritable marker for autism

[39, 40]. In human psychophysics, biological motion typically re-

fers to motion of body parts relative to each other, which is

readily recognized by humans, even when the position of each

limb is indicated only as a dot on a light point display [32]. While

naturalistically moving dot arrangements still represent a

complex stimulus, local detection of acceleration that is

consistent with biological agents emerges as one fundamental

‘life-detector’ evaluating such stimuli [38]. Our results suggest

that a related detector functions as a core perceptual mecha-

nism whose activation readily drives persistent shoaling in

zebrafish.

Social cues often elicit innate behaviors, and social experience

can profoundly shape such innate responses, providing insights

into mechanisms of development and plasticity. One powerful

manipulation, for example, is social isolation. In mice, solitary

males, but not socially housed males, launch attacks on intruder

animals [41]. In contrast to this modulation, we found in juvenile

zebrafish that affiliation and tuning to self-like motion exist even

after complete social isolation, suggesting an innate develop-

mental mechanism. This raises the possibility that individuals

match visual cues against a cognitive representation of idiosyn-

cratic, self-like biological motion which might be generated from

proprioceptive feedback or an efference copy of swimming.

Alternatively, the visual systemmight generate a gradually devel-

oping motion template independent of self-motion.

Coordinated behavior can emerge from autonomous interac-

tions, such as collective odor avoidance in Drosophila, where

mechanosensory interactions upon animal collisions enhance
3530 Current Biology 28, 3523–3532, November 19, 2018
the response probability to escape from mildly noxious stimuli

[42]. Social interactions can also require explicit reciprocity,

such as the codified turn-taking in wren duet singing, which

is reflected in neural encoding of the jointly produced song

by each individual [43]. We demonstrate persistent attraction

of individual juvenile zebrafish toward non-interactive stimuli.

Naturally, the observed affiliation of two agents that both

move toward each other is closer than affiliation observed be-

tween one individual and a non-interactive agent. Within-animal

comparisons of bilateral and unilateral interactions together

with our multi-agent model suggest that individuals equally

shoal with passive-attractive and interactive stimuli. We

conclude that juvenile zebrafish autonomously evaluate and

respond to motion cues during shoaling rather than coordi-

nating an explicitly reciprocal behavior. This lack of reciprocity

suggests that simple passive-attractive stimuli may suffice to

activate neural circuits for social processing in restrained ani-

mals during functional imaging.

Our analysis revealed consistent variability in mutual attraction

between animal pairs which we assigned largely to differences in

individuals’ responsiveness to motion cues, the social drive of

each animal. Recent studies specifically focused on inter-indi-

vidual differences in repeated-measurements of behavior to

reveal genetic and neural causes of phenotypic variability

[40, 44, 45] and its effect on collective behavior [34]. It will be

important to analyze individual animals over longer periods of

time to determine persistence and heritability of different social

personality types. We speculate that individual differences in

the perception of motion cues partially predict social drive,

consistent with impaired interpretation of biological motion in

children with autism [39]. In addition, internal states set by neuro-

modulatory systems shape behavioral individuality [44, 45]. Dif-

ferences across these domains are, in principle, detectable at

the level of neural activity and provide exciting opportunities to

study mechanistic causes and social consequences of pheno-

typic diversity.

Defining minimal visual social cues in a genetic model organ-

ism opens the door for future studies on the underlying brain

mechanisms analogous to the discovery of pheromones and

their role in shaping animal behavior [4, 8, 9]. Our results pro-

vide a baseline set of stimuli at the earliest social stage to

which juvenile zebrafish likely add as they mature. Future

work in older animals will reveal developmental stages when

other naturalistic cues such as the conspicuous zebrafish

pigmentation gain influence on shoaling decisions. In the mean-

time, our stimulus provides a clear path forward for identifying

those areas in the zebrafish brain tuned to biological motion

stimuli displayed to restrained animals during functional

imaging of whole brain activity and optogenetic interrogation

[46–48]. Our finding that changes to stimulus kinetics control

attraction within seconds suggests that neural representations

of stimulus quality can be analyzed using simple stimulus pro-

tocols. It will be interesting to trace the neural pathways that

underpin the social instinct from the detection of conspecifics

by the visual system to the innate responses encoded in the

hypothalamic and limbic centers of the forebrain [49]. Since so-

cial affiliation is a common feature across the vertebrate taxon,

the core principles of neural architecture are likely to be

conserved from fish to human.
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Cameras IDS, PointGrey UI-3370CP-NIR,

Grashopper GS3-U3-41C6NIR-C

16 mm Lens Edmund Optics Cat# 86-571

25 mm Lens Edmund Optics Cat# 86-572
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280 3 340 mm custom cold mirror Praezisions Glas & Optik,
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White Light LED Lumitronix Multibar 35

IR band pass filter Edmund Optics Cat# 84-802
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Herwig

Baier (hbaier@neuro.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Wild-type designates the strain Tupfel Longfin (TL). For our experiments, we used progeny of randommatings frommultiple groups of

three male and three female TL adults. Eggs were collected and raised in Danieau’s solution (17 mM NaCl, 2 mM KCl, 0.12 mM

MgSO4, 1.8 mM Ca(NO3)2, 1.5 mM HEPES) in groups of 25 larvae. At 5 dpf, larvae were transferred to 3 L Techniplast tanks con-

taining system water. Larvae were fed dry food (Sera Micron) three times per day until 20 dpf, supplemented with live rotifer culture

once per day. Artemia culture was supplemented starting at 21dpf. Animals were kept at 27.5�Con a 14h/10h light/dark cycle with the

lights turning on at 7 am. Despite this tight control of rearing conditions, animals of the same clutch sometimes varied by a factor of

three in body size (data not shown) and we used animals approximately belonging to the second and third quartiles of body size

judging by eye. For the experiment in Figure 2E, we sorted individual eggs in Danieau’s solution into the wells of 12 well plates (Corn-

ing Costar). Visual contact betweenwells was blocked by folding white paper strips between the wells. At 5dpf, the larvaewere trans-

ferred to 1 L tanks and otherwise treated and fed the sameway as group housed animals. Visual contact between tanks was blocked

at all times by white paper towels.

On the day of the experiment, animals were transferred to experimental dishes filled with system water using a cut disposable

pipette for animals younger than 16 dpf or a sieve for older animals. Once in the setup, experiments were typically started within
Current Biology 28, 3523–3532.e1–e4, November 19, 2018 e1

mailto:hbaier@neuro.mpg.de
https://doi.org/10.6084/m9.figshare.6939923
https://bitbucket.org/mpinbaierlab/larschandbaier2018
https://bitbucket.org/mpinbaierlab/larschandbaier2018
https://ccl.northwestern.edu/netlogo/
https://bonsai-rx.org/
https://www.ffmpeg.org/
https://conda.io
https://www.graphpad.com
http://www.idtracker.es/


15 min. Setup water temperature ranged from 21 to 24�C. Since gonadal differentiation has not occurred at this stage, males and

females were used indiscriminately. All animal procedures conformed to the institutional guidelines of the Max Planck Society

and the local government (Regierung von Oberbayern). After the experiment, animals were euthanized by an overdose of Tricaine

followed by immersion in ice cold water.

METHOD DETAILS

In summary, we built a setup to record the position of up to 15 individual zebrafish simultaneously in real-time and project arbitrary,

animal-centric visual stimuli onto a screen below the animals (Figure S1E). Animals were monitored in shallow glass dishes of 10 cm

diameter (Duran group, watch glass, nr. 233214607) filled with system water until 1 mm below the inner rim (10 mm height, 40 mL). A

custom built grid was laser cut from 3mmopaque acrylic and positioned to prevent visual contact between dishes. The dishes rested

on a projection film (Rosco Tough Rolux 3000 or Rosco Rolux 400) for visual stimulation. In this arrangement, distance of the fish’s

eyes from the screen was confined to approximately between 3mm and 13mm by the rounded bottom of the dish and the surface of

the water. To limit stimulus distortion due to refraction at the air-glass-water interfaces, we submerged the projection film and glass

dishes in a 4003 6003 100 (width/length/height) tray custom built from a 5 mm glass bottom and 10 mm acrylic walls. The water in

the tray reached up to 1 mm below their outer rim of the dishes to prevent animals from escaping. Animals were recorded at 30 fps

with cameras using the CMV4000 sCMOS chip (IDSUI-3370CP-NIR or PointGrey Grashopper GS3-U3-41C6NIR-C) at a resolution of

2048x1280 pixels. For virtual interactions, we used a 16 mm lens (Edmund Optics Nr. 86-571) at a distance of 850 mm resulting in an

image resolution of 268 um/px to record 15 individual animals simultaneously using one camera. To record up to 8 physically inter-

acting pairs, we used two cameras at a resolution of 2048x2048 pixels each and 25 mm lenses (Edmund Optics Nr. 86-572) at a dis-

tance of 500 mm resulting in an image resolution of 100 um/px. Visual stimuli were generated from a projector (Optoma ML750ST)

reflected onto the projection film from underneath via a 280 3 340 mm custom cold mirror (Praezisions Glas & Optik, Germany).

Infrared illumination was generated from six hundred SMD 3528 LEDs (850 nm) arranged on strips (Solarox LED strips IR1-60-

850) over an area of 900 3 600 mm and passed through a diffusing sheet of frosted acrylic and the cold mirror before reaching

the animals. Visible light was provided by the projector with the exception of the experiment in Figure S1B where we used white light

LED strips (Multibar 35 LED strip, Lumitronix) for reliable switching in an otherwise completely dark room. Illumination was computer

controlled using 5V relay switches (Adafruit) driven by an Arduino. For experiments with visual stimulation, visible light to the camera

was blocked by an IR band pass filter (Edmund Optics Nr. 84-802). Image acquisition at 30 fps, real-time processing and stimulus

generation was performed on a Desktop PC (Intel Xeon E5-1630, 16GB RAM) running Bonsai [50]. Briefly, each camera frame was

background subtracted and a threshold was applied to isolate animals against the background. Next, contours were extracted to

compute center of mass and orientation of each animal.

Based on animal positions and an optional stimulus position file, we populated the projector frame via openGL drawing routines.

A pairing matrix defined which animals were virtually linked during specified episodes of an experiment. Stimuli were black dots

(RGB value (0,0,0)) on white background (RGB value (255,255,255)) unless noted otherwise. Dot size was a multiple of projected

pixel size (1 px was 0.47 mm side length). Constant speed paths in Figures 2A and 2B were generated in two steps: First, we

selected the path of a single 24 dpf animal that was previously recorded during physical interaction. This ‘natural’ path was inter-

polated by a factor of 100. Next, a search algorithm walked along the interpolated path to select successive equidistant points.

The distance was selected to match the average speed of the original path. Intermittent motion was generated by displacing the

stimulus dot along a synthetic knot shaped path at defined time intervals instantaneously to a new position. The knot shape was

used as a locally smooth path that includes slow changes in direction of path curvature. Its shape is defined by the Lissajous curve

(sin(2t),cos(3t), 0 < t < 2pi). In between position updates, the dot was stationary. For experiments shown in Figures 2C–2E average

speed was 5.7 mm/sec for all conditions. For experiments shown in Figures 2F and 2G, dot speed was modulated by sub-sam-

pling the interpolated path at appropriate step sizes. The dot position update interval for intermittent motion in Figure 2F was

666 ms. Constant motion designates a position update interval of 33 ms. Animal and stimulus parameters were streamed to a

text file for offline analysis. The program also stored the video data after background subtraction into an xVid compressed .avi

file via ffmpeg (ffmpeg.org) for later inspection.

Camera and projector were aligned using a separate Bonsai routine once per day: With the IR pass filter removed from the camera,

we recorded the position of four reference points projected onto the projection film to compute the perspective transformation from

camera to projector pixel coordinates using the openCV function getPerspectiveTransform. Animals swimming at a distance from the

projection screen are detected with a lateral offset on the camera frame relative to the orthogonal axis of the projection screen (Fig-

ure S1F). We corrected for this effect by transforming animal coordinates from camera coordinates to projection screen coordinates

depending on the offset from the camera’s optical axis, assuming an average distance of 10 mm of the animals from the projection

screen and applying intercept theorem. Physical interactions in Figure 1 and Figure S1 were tracked offline using idTracker [51]. To

improve its performance with videos of uneven infrared illumination, we pre-processed videos applying a divisive background

correction: A python script generated a median projection frame from ten randomly picked frames of the video. We used ffmpeg

to divide each frame of the video by this median frame.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Output files were analyzed offline using custom written Python scripts. Briefly, we first assigned each animal to a pair, either with

another animal or with a dot stimulus to quantify inter animal distance (IAD) or animal dot distance, respectively. Next, we obtained

a distribution of control IAD by time shifting the position time series of one animal versus the other for 10 times. This represents the

expected IAD based on chance encounters in the absence of attraction [20]. To quantify attraction, we computed the percent reduc-

tion in mean observed IAD relative to the mean of 10 mean shuffled control IADs during a period of 5 min unless otherwise noted:

Attraction=
IADshuffled � IADobserved

IADshuffled

In some experiments, we noticed that attractionwas low during the initial 5-15min, potentially reflecting stress related effects of the

sudden changes of the environment, water temperature and light levels upon transfer into the setup (data not shown). We therefore

excluded the first presentation of each stimulus (typically 30-45 min) of data at the beginning of each experiment from the analysis

except for Figure 1D. Individual experiments lasted up to 12 hours (Figure 1D) but were typically limited to 6 repetitions of each 5 min

stimulus condition.

The statistical unit to report the spread of repeated-measurements is 1 standard deviation (SD) over individual animals throughout

all figures unless otherwise noted. For experiments involvingmultiple repetitions of several stimulus conditions, themean across rep-

etitions was obtained for each animal before computing SD across animals.

To provide an intuition for the spread of repeated-measurements of attraction, we used control data to compute the 95% confi-

dence interval (CI) that represents a null hypothesis of no attraction. For this, we analyzed attraction during 5 min chunks of time

shifted pairs: Each chunk of real datawas time shifted 10 times by different durations. Next, one shifted chunkwas picked to compute

IAD whereas the remaining 9 chunks were used to compute a mean control IADs. This is analogous to the procedure for real data.

Analysis of attraction between virtually linked pairs during periods when no stimulus was visible yielded similar results (Figure S1C).

The 95% CI was approximated as a range of 4 standard deviations around the mean of the distribution of control attraction. Animals

were identified as significantly attracted if attraction exceeded the 95%CI of the null hypothesis.

To analyze the effect of recording duration on the spread of repeated-measurements of attraction, we used the same data and

concatenated individual 5 min chunks of IAD time series to compute control attraction for various simulated recording durations. Fig-

ure S1D shows how the CI predictably depends on the duration of the recording. We therefore re-computed the 95% CI for all data

plots to reflect the shortest data duration that was available for any of the animals plotted in a given figure panel.

For Figure 2B, group differences were statistically analyzed using PRISM 7.04. Each animal was exposed to all stimuli but note that

for the mutual interaction condition, pairs of animals were analyzed together, yielding only one data point per two animals. We there-

fore limited our matched samples 1-Way ANOVA (non-parametric Friedman test) and Dunn’s post hoc test for multiple comparisons

to the four passive stimuli.

To determinemaxima of stimulus tuning curveswe first averaged repeated trials recorded for each animal. Next, themaximumwas

identified from this average tuning curve for each animal. We excluded animals in which the maximum attraction was less than 0.05.

Similar results were obtained by including all animals. Attempts to interpolate the measurements were abandoned. To quantify cor-

relations between two sets of data, we used linear least-squares regression implemented in the function linregress of SciPy. The out-

puts include R: correlation coefficient and p: two-sided p value for a hypothesis test that the slope of the fit is zero. Error bands in

panels 1D and 4BC represent 95 percent confidence intervals obtained by bootstrapping as part of the plotting function tsplot of

Seaborn 0.8.1.

Neighborhood maps were computed inspired by previous work [16]. Briefly, 2 hour position time series of each animal were

smoothed using a hamming filter with a width of 5 frames (160 ms) before calculating animal heading as the direction of motion.

Each animal was used as a focal animal to calculate relative position of its neighbor. Next, the time series of relative positions

were rotated around the focal animal by its instantaneous heading at each time point. We then plotted 2D histograms of rotated rela-

tive neighbor positions in 1 square mm bins, revealing the probability of finding the neighbor at a specific place. The values are

normalized such that all bins have a value of 1 when neighbor density is evenly distributed. Maps of individual animals were averaged

using themean operation. Swim bouts were identified using a custom peak detection algorithm on time series of instantaneous swim

speed derived from the smoothed position time series. To analyze attraction in quartets (Figure 5BC) we separately calculated attrac-

tion between the six possible pairs and averaged the four values corresponding to small-large pairings.

To analyze animal separation at stimulus transitions (Figure 3), we first calculated average time series of dot animal distance during

each stimulus type for each animal. The experiment consists of 6 min segments for each stimulus condition. The test transition of

stimulus attractiveness lasts 90 s. The timing of the transition relative to the beginning of a 6 min segment was randomized within

a window of 60 to 120 s after the beginning of a segment to minimize effects of occasional local dish occupancy biases of individual

fish. The data were aligned with respect to the transition before averaging the trials of each animal. Next, we normalized the average

I-C-I and I-X-I time series to a range from 0 to 1 by subtracting at all time points the IAD value at the last frame before the first stimulus

transition and dividing by the 90th percentile of the resulting series. To limit this analysis to animals reliably attracted to the stimulus

we excluded 16 out of 30 animals whose average normalized IAD time series went below a value of�1 at any point during the I-C-I or

I-X-I condition. The dissociation slope was calculated as a linear fit through 10 s of the normalized IAD time series after stimulus tran-

sition for each animal using the function linregress of SciPy. Slopes were compared using matched samples t test.
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Multi-agent Model
The virtual arena was modeled as a circle of 100 mm diameter. Agents moved at constant speed of 0.2 mm per simulated time step,

resulting in an agent swim speed of 6mmper 30 frames, closelymatching our experimental conditions where animals are recorded at

30 frames per second and swim on average at 3-7 mm/sec (Figure 2G). At the boundary of the virtual arena, agents reversed into a

random direction until pointing away from the boundary.

Avoidance of collisions was not explicitly modeled and within the 100 mm virtual arena, all agents were visible to each other. At

every turn event (every 30 steps), IAD was calculated and saved for post hoc analysis of attraction produced by the model.

To simulate the effect of individual’s social drive on mutual attraction (Figure 4E), we repeatedly ran the model for 72,000 steps

(40 min simulated time) using different sets of ps1 and ps2 for two agents, respectively. For each run of the model, agents were initially

positioned randomly and mean IAD over the model run was saved for subsequent analysis. Each parameter combination was tested

120 times. Attraction was calculated analogous to the real data, using as control IAD the outcome of themodel when both ps1 and ps2
were set to zero. Each set was simulated six times for 9,000 steps, corresponding to 6 repeated trials of 5 min each for the pairwise

combinations in Figure 4B.

To demonstrate that our model can produce assortative shoaling, we explicitly implemented a factor s for self-preference. This

parameter acts directly to bias social turns toward animals of the same group. To achieve this, the centers of mass of each animal

were weighted by this factor according to which group they belong and social turns were directed toward the weighted average cen-

ter of mass.

For 4 agents belonging to two types, the weighted average was computed as follows:

s: self-preference (0 < s < 1)

S: self-type agent

O1 and O2: other type agents
Weighted average=S
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For s = 0 (no self-preference), this model is equivalent to the simple model described above where agents turn toward the average

center of mass for all animals.

For s = 1 (complete self-preference), agents only consider their own type without any contribution from other types to the average

center of mass.

In this model, self-preference of 0.5 or higher reproduced the observed suppression of between-type attraction (Figure S5A).

DATA AND SOFTWARE AVAILABILITY

Raw behavior data is available at FigShare: (https://doi.org/10.6084/m9.figshare.6939923). Custom python code for data analysis

from raw data to final figures and custom Bonsai workflows for virtual shoaling setup are accessible on Bitbucket: (https://

bitbucket.org/mpinbaierlab/larschandbaier2018).
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