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Brain evolution has often been correlated with the cog-
nitive demands of social life. Further progress depends
on our ability to link cognitive processes to correspond-
ing brain part sizes and structures, and, ultimately, to
demonstrate causality. Recent research suggests that
fishes are suitable to test general hypotheses about
vertebrate social cognition and its evolution: brain struc-
ture and physiology are rather conserved among verte-
brates, and fish are able to perform complex decisions in
social context. Here, we outline the opportunities for
experimentation and comparative studies using fish as
model systems, as well as some current shortcomings in
fish social cognition research.

Introduction

In its broadest sense, social cognition refers to the mecha-
nisms by which animals acquire, process, store, and act on
information from other individuals [1]. Many apparently
complex social interactions, such as those found in
humans, may rely on specialized cognitive processes, in-
cluding joint attention and sharing intentions, the ability
to attribute beliefs and desires to other individuals (‘theory
of mind’), or the learning of behaviors through imitation of
knowledgeable individuals [2,3]. Recent research has fo-
cused on emotional processes that may underlie more
complex forms of cooperation, such as the ability to keep
close stable bonds [4,5], the role of empathy [6], and
inequity aversion (a negative response to receiving a smal-
ler reward than that of a partner [7]). A general underlying
assumption is that the use of such seemingly complex
cognitive processes may only be possible with the evolution
of specific brain areas and/or circuits. The standard ap-
proach to this assumption has been to correlate species
differences in cognitive performance, in social organization
and in other aspects of life considered cognitively demand-
ing (e.g., extractive foraging) with brain size and/or brain
part size [8]. Although a potentially valuable starting
point, this approach has its shortcomings [2,9]. It cannot
necessarily tell us much about the importance of sophisti-
cated cognitive processes, because larger brains may often
mean ‘more of the same’ rather than an improvement in
the sophistication and number of possible cognitive pro-
cesses [9,10]. There is also considerable debate concerning
the links between variables that have been used as proxies
for brain performance and cost, that is, absolute brain size,
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brain size relative to body size, the absolute or relative size
of specific brain parts known to be involved in cognitive
processes, and precise brain structure such as cell density,
connectivity, and so on [2,9,11]. This is beginning to be
addressed in studies linking cognitive processes to the size
of brain parts in primates [12]. Nevertheless, we need new
independent samples (including groups of species other
than birds and mammals) using a multivariate approach to
control for potentially confounding ecological and/or life-
history variables (such as climate or longevity) to explore
the repeatability of published post-hoc interpretations of
results [2].

In this context, fishes have begun to provide major
insights concerning vertebrate social cognition, with some
projects explicitly integrating the study of behavior, brain
anatomy, and brain physiology. Since the publication of a
book on fish social cognition and behavior that covers the
literature until 2010 [13], various breakthroughs have
been achieved in studies on fish brain anatomy and socio-
cognitive abilities that will offer new possibilities for future
research linking brain size and structure to environmental
variables, social structure, and cognitive processes. Here,
we evaluate the following points: (i) the discovery of im-
portant similarities in brain structure between fishes and
other vertebrates suggests that various results obtained
with fishes can be generalized; (ii) fish biologists are now
studying the causes and consequences of variations in
brain (part) size, applying concepts that were initially
developed for primates, other mammals and birds; and
(ii1) increasing behavioral evidence indicates that at least
some fish species may solve complex problems using fast
learning, precise memory, and cognitive processes that go
beyond conditioning.

Fish brains are remarkably similar in organization to
those of other vertebrates

For any comparison of sociocognitive abilities between
fishes and other vertebrate groups, it is important to know
whether fish brains are similar or different to those from
other groups with respect to organization and function.
Classic studies emphasized the differences, such as the fact
that fish have small brains relative to body size and a
relatively small and unstructured forebrain (telencepha-
lon) compared with birds and mammals [14]. However,
recent studies emphasized similarities with respect to
brain structures involved in social decision-making
(Box 1). Most importantly, a large network of nuclei that
is essential for learning and social behavior is highly
conserved within vertebrates [15-18] (Figure 1). The hip-
pocampus and amygdala (centers for memory formation
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Box 1. Social decision-making in vertebrate brains

Across vertebrates, a conserved (i.e., putatively homologous) social
decision-making network (SDM) in the brain regulates social
interactions (Figure 1, main text). It comprises the social behavior
network (SBN) consisting of six mutually interconnected nuclei and/
or brain areas [15], and the mesolimbic reward system (MRS) [16,18]
consisting of seven mutually interconnected nuclei and/or brain
areas. Two of the MRS nuclei are also part of the SBN, thus linking
them into the SDM [16,18] (Figure 1, main text). The expression of
hormones, neurohormones, enzymes, and receptors in these areas
is similar among vertebrate groups [16].

The SBN brain nuclei and/or areas have sex-steroid receptors that
help to regulate key social behaviors, such as parental care,
aggression, mating and sexual behaviors, response to social
stressors, and communication [15,16,34]. The SDM includes regions
responsible for memory formation and for emotional assessment;
that is, the fish equivalents of the mammalian hippocampus and
amygdala (hippocampus: the ventral part of the dorsolateral region
of the telencephalon; amygdala: the dorsal part of the dorsomedial
area of the telencephalon [16,18,19]). The structural similarities fit
well with a recent study that demonstrated that regular access to
massage-like physical stimulation lowers stress levels in fish [85], as
previously reported in humans [86] and proposed for other primates
[87]. Thus, this fish reward system apparently functions such that a
purely hedonistic experience without material benefits might
positively affect survival and reproduction [85]. Regarding potential
differences among vertebrate groups, the SDM will interact with
other brain areas [16,34] and, if it does so with areas in the
telencephalon and/or neocortex, this may have important implica-
tions for comparative social cognition.

and emotional assessment, respectively), form part of this
network and have the same functions for all vertebrates
investigated [19].

Other areas of fish and mammal brains also have impor-
tant similarities in organization and function. In both
groups, aversive stimuli or inappropriate outcomes lead
to activation of the lateral habenula (a mesencephalic nu-
cleus), which then affects motor and cognitive behaviors by
inhibiting the activity of mesencephalic dopaminergic and
serotonergic neurons [20]. Furthermore, the anatomy, de-
velopment, and function of the cerebellum are conserved
between mammals and bony fishes [21], and cerebellum
lesions in both groups prevent associative learning in vari-
ous contexts [22]. Also, the lateralization of brain functions
(i.e., the selective processing of information in one hemi-
sphere of the brain [23]) is now known to be widespread in
fishes, asitisin birds and mammals [23—-25]. Lateralization
can reduce distance between connected brain parts and,
thus, increase the speed of decision making [9]. Similarities
between fish, mammal, and bird brains make it more likely
that results on social cognition in fishes can be generalized to
other vertebrates, and that concepts developed with mam-
mals and birds can be tested on fishes. Regarding the latter,
patterns include correlations between the relative size of
key brain parts (such as the neocortex) and group size and
extractive foraging (as found in primates), and correlations
between pair bonding and brain measures (as found in birds
and various mammalian groups) [8]. In the next section, we
present recent findings linking brains and ecology in fishes.

Links between ecology and brain evolution in fishes

Comparative studies on brain evolution in mammals
and birds have been criticized for various reasons, includ-
ing failure to use multivariate methods to control for
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potentially confounding ecological and life-history vari-
ables, and the analysis of overall brain size rather than
brain part sizes [2]. These criticisms have been addressed
in most of the fish studies presented here. Many studies on
potential links between social cognition and brain evolu-
tion examine cichlids because their adaptive radiations
with niche specialization have occurred repeatedly on local
scales in the African Great Lakes. Ecological factors may
cause selective adjustments to the size of relevant brain
areas in cichlids, given that, in lake Tanganyika species,
overall brain size explains only 86% of the variance in
size of major brain areas [26]. This would be predicted if the
size of each brain part can evolve at least in part indepen-
dently of the other parts, rather than all brain parts being
constrained to change in an entirely allometric manner
with each other [2]. In the Ectodinii cichlids of Lake
Tanganyika, monogamy correlates with larger relative
telencephalon size [27,28]. In a more diverse sample of
Lake Tanganyika cichlid species, female parental care
correlates with a larger brain overall [29], whereas the
relative size of hypothalamus and cerebellum is decreased
[30]. Habitat complexity, which is linked to interspecific
social complexity, also seems to have major effects on the
telencephalon and overall brain size in these cichlids [26—
30]. This conclusion mirrors evidence for brain size reduc-
tion in island-dwelling birds and mammals, including
hominids, as an adaptation to reduced ecological chal-
lenges [31]. A key point that emerges from these studies
is that social cognition should not be restricted to interac-
tions with conspecifics (i.e., [32]), but should extend to
between-species competition, mutualism, and predator—
prey relations, as also suggested for primates [3].

The correlative approach to the link between sociality
and brain evolution may yield important insights when
applied to fishes. Nevertheless, a more powerful approach
would be to conduct experiments to infer brain—behavior
links. A variety of potential tools has been used for such
studies in vertebrates, such as functional magnetic reso-
nance imaging (FMRI), lesions, methods for looking at
immediate early gene action [2], and more recently, selec-
tion experiments for brain size [33]. In the next section, we
discuss experimental approaches linking brains and be-
havior in fishes.

Brain parts as causal agents for social behavior in fishes
Recent investigations of immediate early gene expression
have provided important insights concerning the function-
ing of the social decision-making network in the model
cichlid species Astatotilapia burtoni [34]. Dominant males
are easily recognizable by their color pattern, which differs
from that of subordinate males. Dominance changes in
both directions can easily be induced in the lab [35] to
document the consequences on behavioral repertoire and
gene expression. If an individual gains dominance, the
mRNA levels of two immediate early genes (cfos and
egr-1) are upregulated within minutes. Losing dominance
causes the upregulation of only one of these genes [34]. The
increased immediate early gene expression linked to the
acquisition of dominance seems to cause an increase in the
production of gonadotropin-releasing hormone (GnRH)
[35], which has cascading effects on aggression and
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Figure 1. Regions of a fish brain involved in social cognition and conserved among vertebrates. Schematic representation of a sagittal section of a teleost brain (outline
modified from [22]) that shows brain regions involved in social behavior that have recently been identified as conserved (i.e., homologous) within vertebrates. The teleost
brain is divided into five large regions along the anteroposterior axis: telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon. The habenula
(involved in controlling motor and cognitive behaviors) and the cerebellum (involved in associative learning) are represented in red. The social decision-making network
comprises nuclei from the social behavior network (yellow) and the basal forebrain reward system (blue), with two nuclei involved in both the latter networks (green). The
full name of each nucleus involved in the teleost social decision-making network and its putative mammalian homolog are given in the table below the figure. This figure
recapitulates data on the social decision-making network and social behavior network from [15,16,18], but see [19] for a slightly different terminology.

reproductive behavior via the regulation of key fish hor-
mones, such as 11-ketotestosterone, cortisol, and kisspep-
tin, in various brain areas, with changes taking place
within a few hours to weeks [36]. Such changes increase
the social competence of an individual [37]. Zebrafish offer
similar opportunities as an experimental species, as well
as great potential for genetic manipulations [17]. Under-
standing the brain physiology that underlies social behav-
ior will be essential in unraveling the effects of brain
structure and size differences among species.

A promising recent approach has been to select for
larger and smaller brains and determine the associated
behavioral effects. Apparently, brain size and functioning
in fishes are flexible on individual, ecological, and evolu-
tionary timescales [38—-40]. Recently, Kotrschal et al. [33]
showed that relative brain size diverged within one to two
generations in response to artificial selection in guppies
(Poecilia reticulata). Large-brained females outperformed
small-brained females in a numerical-learning assay

designed to test cognitive ability, although effects on social
cognition are currently unknown. An equally promising
alternative approach would be to create selection lines
exposed to different levels of social complexity to test
whether brain size and structure evolve as a consequence.

Together, recent studies demonstrate generality among
vertebrates in the brain features involved in social cogni-
tion. Fishes are suitable to investigate the physiological
processes in the brain that underlie decision making, and
to test hypotheses concerning the links between brain part
size and/or structure evolution and ecological variables. In
the remainder of this review, we evaluate the evidence that
the cognitive abilities and processes facilitating fish social
behavior may be similar to those in mammals and birds.

Cognitive performance of fishes in social contexts

The performance of humans and other animals in cognitive
tasks is often used to infer the cognitive processes and
decision rules that may underlie the behavior of subjects.
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Behavioral tasks in the social domain have revealed vari-
ous similarities between the decision rules and outcomes
found in fishes and those in other vertebrates, including
humans. The uses of fishes to develop and test hypotheses
about group decision-making and collective cognition are
presented in Box 2. With respect to the decision rules
underlying social learning, nine-spined sticklebacks have
become a model system. Similar to humans, they use a ‘hill-
climbing’ strategy whereby they compare their own success
with that of a demonstrator, and base their decision to copy
on the relative level of success observed [41]. The decision
from whom to learn is based on the success of potential
demonstrators or a copy of the majority rule, using local
enhancement [42-44]. Studies on the use of social infor-
mation to asses predation risk are revealing further abili-
ties of fish to group closely related predators according to
their smell [45,46], learn from heterospecifics [47], and
incorporate multiple cues into decisions [48].

Counting abilities provide another example of similar
cognitive mechanisms in fishes and mammals, including
human infants. Shoaling fish typically prefer larger shoals
over smaller shoals [49-52], allowing researchers to study
their counting abilities in a social context. Mammals have
two separate counting systems, one precise system for
small numbers up to three or four, and one less precise
for large quantities [53]. Redtail splitfins [50], mosquitofish
[49,51,54], guppies [55,56], and angelfish [52] match mam-
mals in their performance on counting tasks, making it
likely that the underlying mechanisms are similar.

Box 2. Collective cognition

Collective cognition is a young and dynamic field with a strong
emphasis on theory, and models investigating the dynamics of
group decisions continue to be developed (e.g., [88-90]). Collective
behavior allows individuals to overcome their own cognitive
limitations through emergent information-processing capabilities
that are absent in individuals [91]. The key point is that lack of
knowledge would cause some individuals to make decision errors if
alone. In a group, decision rules are in place so that knowledgeable
individuals are followed preferentially [91-94]. The importance of
group cohesion for individual fitness prevents wrongly informed
members from leaving the group and, thus, making an incorrect
decision [93,95]. A recent model proposes that following leaders
might be more efficient for idiosyncratic decisions, whereas
aggregating information is better for repeated decisions [90]. Fishes
have been instrumental to test various predictions from these recent
theoretical models. First, it has been shown that collective behavior
is beneficial in fishes, because the speed and accuracy of decisions
increase with group size [94,96]. Furthermore, not only the
information available, but also group cohesion appear to have a
role in group decisions, as was shown in golden shiner fish [95].
Thus, group cohesion prevents wrongly informed individuals from
committing their error. When information is unequally distributed, it
appears that groups either aggregate the information and use
quorum responses or follow a few informed individuals, referred to
as ‘experts’ or ‘leaders’ (reviewed in [91,92]).

A powerful tool to test empirically the emerging theories is
‘robofish’, whose movement patterns are experimentally pro-
grammed and towards which real fish react relatively naturally
[93,97]. It has been used to show that, whereas singleton stickle-
backs are susceptible to a leader behaving in a maladaptive way
(going towards a predator), larger groups avoid this pitfall by using
a quorum response [93]. Similarly, in mosquitofish, the accuracy
and speed of decision at choosing the predator-free arm of a Y-
maze, despite a robofish leading them towards the predator-
inhabited arm, increased with group size [94].
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Cooperation between unrelated individuals is a topic
where fish research has provided major contributions by
showing that decision rules and partner control mecha-
nisms that humans use to stabilize cooperation, in partic-
ular reciprocation, are found in other animals. The
economists’ standard assumption that humans behave
rationally, combined with the difficulty to prove reciprocal
strategies in nonhuman animals [57,58], led to the conclu-
sion that reciprocation is complex without scientists aim-
ing to identify its underlying processes. It is often assumed
that it relies on ‘quantitative abilities’, such as a precise
memory of past interactions [10,57].

As a consequence, most research in nonhuman animals
has focused on the ability of the subject to use various
forms of reciprocation, and fishes have provided some of the
best examples. Classic studies provide strong evidence that
partner prey fish reciprocate when sharing the risks of
inspecting a nearby predator [59]. More recently, it was
shown that guppies choose a partner that cooperates simi-
larly to themselves for such inspections [60], and coopera-
tion with specific partners stabilizes over time, because
guppies are more cooperative with familiar partners [61].
Cleaner wrasse have provided evidence for various impor-
tant concepts developed to explain human cooperation.
‘Client’ reef fish visit cleaners to have ectoparasites re-
moved, but cleaners prefer client mucus. The resulting
conflict has led to various adaptations. For example, by-
stander clients pay close attention to the service quality
that cleaners provide to current clients, and the cleaner
Labroides dimidiatus is in return more cooperative if
observed [62]. Such audience effects have also been de-
scribed in a competitive context in Amazonian mollies and
the cichlid A. burtoni, where males alter courtship and
aggressive behavior if observed by another male [63,64]
and depending on their familiarity with the bystander [65].
Furthermore, pairs of the cleaner wrasse L. dimidiatus
solve the problem of remaining cooperative during co-
inspections of clients where the one who cheats first ben-
efits while both share the costs of a client leaving in
response. The solution is asymmetric punishment: the
larger males pay a cost to chase female partners when
the latter cheat a client, a behavior that yields future
benefits to both males and clients because females will
behave more cooperatively [66]. Males adjust punishment
levels flexibly based on their relationship quality with the
female and the value of the client [67,68]. The various
decision rules of the cleaner wrasse appear to be linked to
rather unique cognitive challenges because they perform
better in tasks replicating problems in natural client inter-
actions than do closely related wrasse or primates [69,70].
The underlying cognitive processes are poorly understood.
Nevertheless, it has been shown that cleaners quickly
relearn in reversal conditions (whereby the previously
unsuccessful option becomes the successful option) [69],
which demonstrates a flexibility that was proposed to be a
key selection factor for the evolution of large brains [71].
Furthermore, cleaners remember the ‘when’ and ‘what’ of
their interactions [72], allowing them to choose clients with
a greater parasite build-up because their last visit was
longer ago. This performance comes close to the episodic-
like memory described in food-caching jays (that, in



addition, remember where they hid food [73]). Finally, the
roving cleaner wrasse L. bicolor, is more cooperative in core
areas of its home range where the chances of repeated
interactions are higher [74], a phenomenon called ‘the
shadow of the future’ in the human literature.

A cooperative context in fishes where the interest is on
coordination rather than on strategies is cooperative hunt-
ing, where individuals work together to catch prey. Yellow
goatfish have been described to hunt in groups such that
there are chasers and blockers, and all coordinate to pry
out prey hiding in crevices [75]. By coordinating different
complementary roles, they perform what is considered the
most complex form of cooperative hunting: collaboration
[76]. Groupers not only hunt collaboratively with Napoleon
wrasse and moray eels, but also use referential gestures
(i.e., signals used to draw the attention of the receiver to an
external entity) to direct the attention of their partner
towards hidden prey, fulfilling criteria used to classify
communication as intentional (goal-directed) in apes and
a corvid [77].

Taken together, the behavioral examples presented
here show that fishes can exhibit sophisticated social
behavior; that is, they solve problems suggested to involve
complex coordination, precise memory, and decision mak-
ing. Furthermore, some behaviors may involve cognitive
processes that go beyond conditioning learning. The clear-
est evidence of a more complex cognitive process in fishes is
the demonstration of transitive inference in the cichlid A.
burtoni: by observing fights between males, they infer their
rank order and, thus, who is dominant in pairs that they
have never seen fighting each other [78]. Nevertheless, it
has to be acknowledged that many cognitive processes that
are currently focuses of interest in mammals and birds
(typically in the context of stable individualized groups)
have not yet been studied in fishes. Of particular interest
are potential fish analogies of processes that, in anthropoid
primates, apparently involve specialized regions, such as
the frontal lobe of the neocortex, which is found only in this
group [79]. Negative results, such as the apparent absence
of inequity aversion in cleaner wrasse [80], would also be of
value for the comparative approach. Likewise, complex
communication and the evolution of language [81] is a
subject that is rarely addressed in fishes (but see [77]).

Concluding remarks

Our main conclusion from the current literature on fish
social cognition is that the brains and social behavior of fish
are more similar to those of mammals and birds than
previously appreciated. This conclusion yields various
key topics for future research, including gaps that require
closing (Box 3). Given that associative learning appears to
be of paramount importance for fish [13], they seem par-
ticularly suitable to test how differences in performance
(speed, precision, and volume of information learned, du-
ration of its retention, and flexibility of use) translate into
brain differences [9,10]. Complex cognitive processes, such
as transitive inference, occur in fishes, but the diversity
and taxonomic extent of these is poorly understood, despite
fish already being used to study stress and psychological
diseases with applications for human medical research
[82—-84]. The differential expression of complex cognitive
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Box 3. Potential future avenues for fish social cognition
research

One future line of research should build on recent progress, aiming
at the full integration of research on brain structure, decision-
making processes, and cognitive performance. The social decision-
making network (SDM) appears to be of key importance and should
be checked for connections to brain areas known to be involved in
higher cognitive processes, because this is a likely source of
variation in cognitive performance among taxa. Knowledge of the
SDM should be combined with more classic measures of brain size,
brain part size, structure, and interconnectivity. All of this should be
applied to species living in a variety of environments and social
systems, taking advantage of independent species radiations (e.g.,
cichlids) to determine the repeatability of results. On the behavioral
side, we need to develop standardized tests that allow the
comparison of cognitive performance among taxa. Suitable starting
topics are those already well studied in fishes, such as swarm
intelligence, social learning, and cooperation. Integrating disciplines
would allow the cognitive performance of a species to be correlated
with brain features and emerging predictions tested using lesions or
immediate early gene methods.

Important insights will also be achieved by focusing on largely
underexplored challenges. On the behavioral level, fish biologists
should emulate the research of colleagues working on mammals
and birds to test to what extent fishes have variants of supposedly
advanced human cognitive processes: communication with aspects
of human language, processes linked to a theory of mind, social
bonds, and emotions. Furthermore, studies that link cognitive
performance with brain evolution should include fish species that
are primitive in the sense that they represent ancient lineages that
have diverged the least from the common fish ancestor. Candidates
include the bichirs (Polypterus) and reedfish (Erpetoichthus) (two
genera of predatory bony fish inhabiting African rivers) and many of
the 1200 species of cartilaginous fishes [98,99] (sharks, rays, skates,
chimaeras, and elephant sharks). Studying such species will help to
understand the ancestral form of the vertebrate brain and its
subsequent adaptations.

processes in closely related species will potentially allow
the neural causes and/or consequences of such cognitive
tools to be identified.
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